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I. Introduction
The free atoms of the transition metals have an

incomplete d shell in the ground state or in excited
states of small energy. The d electrons are respon-
sible for the most interesting properties of these
elements as free atoms or in the metallic bulk phase.
In the same way, most properties of clusters of

transition elements reflect the rather localized be-
havior of the d electrons, in contrast with clusters or
solids of simple sp metals whose properties are
dominated by the delocalized behavior of the external
sp electrons.1,2 This delocalized character leads to one
of the main characteristics of sp clusters: the forma-
tion of electronic shells and the occurrence of shell-
closing effects3 similar to those in free atoms or in
nuclei. Those electronic shell effects are also present
in clusters of coinage metals (Cu, Ag, Au) since the
d electrons form full d10 shells in these atoms. For
this reason, noble-metal clusters are first reviewed
in section II. Clusters of typical transition elements
do not have shell effects because, as said above, the
unfilled d shells dominate their properties. Still,
transition-metal clusters have a wealth of other
properties that make their study extremely interest-
ing.

Here, the electronic properties of transition-metal
clusters will be reviewed by presenting the results
of experimental measurements and discussing those
results in light of theoretical calculations in sections
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III, IV, V, and VI. An usual output of the calculations
is the geometrical structure of the cluster, which is
a crucial ingredient in any attempt of interpreting
the experimental measurements of the electronic
properties. For small clusters, ab initio methods can
be used to determine their structure and reviews
have been published for the limiting case of transi-
tion-metal dimers.4,5 Here we are mainly interested
in clusters larger than the dimers. In this case, there
are often several low-lying structural isomers with
energies only slightly above the ground state. How-
ever, the close interplay between atomic and elec-
tronic structure means that the ordering and the
nature of the electronic energy levels, especially those
near the highest-occupied orbital, are different for
different isomers, and a comparison of the calculated
density of electronic states with the spectrum mea-
sured in photoelectron experiments allows one to
discriminate between the different possible isomers
contributing to the measured spectrum. On the other
hand, the structure of a large cluster cannot be
determined by ab initio calculations because of the
enormous computational work involved. The reactiv-
ity toward certain molecules provides an indirect way
to determine the structure since the number of
molecules adsorbed on the cluster surface gives
information on the number of available adsorption
sites and consequently on the shape of the cluster.
The link with these experiments is mostly done by
calculations that employ semiempirical many-body
interatomic potentials. A difficulty in this context is
the extent of modification of the original free cluster
structure by the adsorbed molecules. Evidently the
kind of adsorbed molecules should be such as to leave
the geometry of the cluster unaffected. Another
promising probe of cluster structure is provided by
mobility experiments6 in which the clusters acceler-
ated by an electric field traverse a chamber that
contains an inert gas. Collisions with the inert gas
atoms retard the passing clusters, and the travelling
time depends on the collision cross section σ which
itself is sensitive to the cluster shape; that is, compact
clusters have a lower collision cross section than
those with a more open structure. To our knowledge,
however, this technique has not been yet applied to
transition-metal clusters. All the techniques applied,
experimental and theoretical ones, lead to the conclu-
sion that the clusters of d elements prefer compact
structures as a way to maximize the interaction
between the rather localized d orbitals. This rough
statement has to be qualified in practice, and by
looking at the details, one realizes that there is a high
richness in the structure and properties of transition-
metal clusters. The description of the experimental
results on molecule adsorption and their interpreta-
tion in the light of semiempirical many-atom poten-
tials is provided in section VII.

The other topic treated in detail in sections VIII-
XII is the magnetism. A number of experimental
measurements of magnetic moments (µ) have been
performed, and as for bulk metals, substantial dif-
ferences are found between different elements. For
the typical magnetic metals, the evolution from the

large moments of the free atoms to the lower mo-
ments in the bulk is not smooth. Instead, oscillations
of µ with cluster size have been observed and, up to
now, these are only partially understood. The most
extended view is to ascribe the oscillation to atomic
layering occurring during the growth of the clusters.
Some of the metals that are nonmagnetic in the bulk
phase also have interesting magnetic properties for
small enough clusters. The prospects for technological
application of the magnetic properties of clusters is
enormous.7-9 Some of the most interesting measure-
ments of the magnetic properties involve large clus-
ters. As stressed above, ab initio methods are difficult
to apply in this case and a common practice is to use
the tight binding method10 to calculate the electronic
structure with model cluster geometries: often a
fragment of the bulk lattice and other times geom-
etries derived from semiempirical interatomic poten-
tials. There is a wealth of evidence that the tight
binding method is well adapted for describing the
interactions between the localized d electrons. To be
fully realistic those calculations also have to take into
account the additional effect of the sp electrons.

One of the typical questions in clusters is the size
for which the properties have already converged to
a stable value, and the cluster can be considered as
a small piece of bulk material. The convergence is in
general slow. But more important than the conver-
gence to the bulk is the fact that the properties vary
a great deal in the regime of small or medium sizes
because this provides the potential for novel applica-
tions.

II. Noble Metal Clusters

A. Electronic Shell Effects in Clusters of Simple
sp Metals

Cu, Ag, and Au atoms lie at the end of the 3d, 4d,
and 5d periods, respectively. The d shell is filled with
10 electrons, and the valence shell contains a single
s electron. In the bulk, the d band is well buried
below the Fermi level. This leads one to expect some
similarities between small clusters of the noble
metals and the clusters of the alkali elements (Li,
Na, K, Rb, Cs). For this reason it is convenient to
begin by briefly reviewing the most remarkable
characteristic of the alkali clusters. This consists of
some properties, like the population abundance in
cluster beams obtained by the usual gas aggregation
techniques,11 or the ionization potential,3 that show
a nonmonotonic variation as a function of cluster size,
with maxima at some particular cluster sizes and
sharp drops after those “magic” sizes. It was im-
mediately realized that the magic numbers reflect
electronic shell-closing effects.11 The valence electrons
of alkali clusters behave like independent electrons
moving in an effective potential well that, in first
approximation, has spherical symmetry around the
cluster center. The spherical symmetry of the effec-
tive potential can be justified by treating the small
alkali cluster as a liquid droplet. The alkali metals
have low melting points, and these are known to be
even lower in small particles.12 In those circum-
stances the electrons fill shells 1S, 1P, 1D, 2S, ...
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characterized by a principal quantum number (n )
1, 2, ...) and another quantum number giving the
orbital angular momentum (l ) 0(S), 1(P), ...). The
degeneracy of each shell, that is the maximum
number of electrons that the shell can accommodate,
is 2(2l + 1). These electronic shells are separated by
energy gaps, so clusters with the precise number of
electrons required to fill the shells are more stable
than clusters of neighbor sizes, just like the inert gas
atoms in the periodic table. The observed magic sizes
correspond to N ) 2, 8, 18, 20, 40, 58, ... electrons,
which are explained by a shell filling sequence
(1S)2(1P)6(1D)10(2S)2(1F)14(2P)6(1G)18... (capital letters
are used to indicate the angular momentum of cluster
orbitals to avoid confusion with orbitals of s, p, d, ...
symmetry around individual atoms that will be used
extensively in the paper).

The simple, approximately spherical, effective po-
tential in which the electrons move arises from a sum
of contributions

Here Vi is the external potential due to the ionic
background. The weak pseudopotential of the alkali
atoms allows for a simple modeling of Vi using the
well-known jellium model of metal physics:1 the ionic
background is simulated as a continuous positive
charge distribution (spherical in our case) of constant
density, that is

where R is the radius of the spherical cluster. This
charge distribution produces an electrostatic poten-
tial

where the integral is extended over the volume Ω of
the sphere. Since F+(r) is constant inside Ω, the
integral gives

This potential is harmonic inside R and Coulombic
outside, but the important message from eq 4 is the
spherical symmetry of Vi around the cluster center.
The second contribution in eq 1, Ve, is the classical
electrostatic potential of the electronic cloud F(r)

Strictly speaking, this potential is not spherically
symmetric for unfilled shells, but the assumption
made for F+(r) suggests replacement of Ve(r) by its
spherical average about the cluster center, Vh e(r).
Finally, Vxc(r) is the nonclassical potential due to

exchange and correlation effects between the elec-
trons. Working within the framework of density
functional theory (DFT)13,14 and using the well-known
local density approximation (LDA)

where εxc(F) is the exchange-correlation energy per
particle in a homogeneous system of density F and
εxc′(F) its first derivative with respect to F. Consistent
with the above approximations, we can evaluate
Vxc(r) using a spherically symmetric density distribu-
tion F(r).

In summary, the approximations introduced above
serve to justify the existence of an effective potential
that is approximately spherical in which the electrons
move, this potential giving rise to highly degenerate
electronic shells. The approximations made are better
in the neighborhood of closed shells. Clusters with
open electronic shells are more complex: the electron
cloud is not spherical and this induces a deviation of
the cluster geometry from a sphere. These deforma-
tions have been taken into account by allowing for
spheroidal (nonspherical) deformations of the con-
tinuous positive background.15-17 The Jahn-Teller-
type deformations of the positive background lift the
degeneracies of the electronic shells. The shape
deformations can be understood as a way to optimize
local charge neutrality (cancellation between positive
and negative charge densities), which is taken as an
extreme assumption in the ultimate jellium model.18

Despite the nonspherical deformations of the clusters,
the fact that large stability is achieved at shell closing
(that is, for the truly spherical clusters) is preserved
in the improved spheroidal models, although the
magnitude of the shell closing effect is somewhat
reduced. This is good indeed, since the “purely
spherical” models overestimate the magnitude of
shell closing effects. A consequence of the shape
deformations for small clusters is the occurrence of
even-odd effects in the abundance, ionization po-
tential, and other properties.3,15,16 This is due to the
almost complete lifting of the orbital degeneracy:
thus clusters with a doubly occupied HOMO level are
more stable and have a larger ionization potential
than clusters with a singly occupied HOMO. This
even-odd effect has been observed in the relevant
measured quantities,3 although its magnitude is
weaker than the magnitude of the shell closing effect.

B. Shell Effects in Noble-Metal Clusters
Experiments for noble-metal clusters (CuN, AgN,

AuN)19,20 indicate the existence of shell effects similar
to those observed in alkali clusters. For instance, the
mass spectrum of AgN

+ clusters obtained by bom-
barding the metal with inert-gas ions shows two
types of anomalies. The first one, observed only for
small clusters, is an odd-even alternation of the
cluster intensities, such that the intensity (popula-
tion) of odd-N clusters is greater than the population
of even-N clusters. Its explanation is the same as that
for alkali-metal clusters. The other anomaly, more
relevant for our present discussion, is that a steep
drop of the cluster intensities occurs after the sizes

Vxc
LDA(r) ) [εxc(F) + Fε′xc(F)]F)F(r) (6)

Veff(r) )Vi(r) + Ve(r) + Vxc(r) (1)

F+(r) ) {Fj+, r < R
0, r > R

(2)

Vi(r) ) -∫Ω

F+(r′)
|r - r′|d

3r′ (3)

Vi(r e R) ) 2π
3

Fj+r2 - 2πFj+R2

Vi(r g R) ) -4π
3

RFj+‚1
r

(4)

Ve(r) ) -∫ F(r′)
|r - r′|d

3r′ (5)
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N ) 3, 9, 21, 35, 41, and 59. By focusing on the 5s
electrons of the Ag atoms, the experimental results
can be explained by using a model similar to that for
alkali clusters, that is, assuming that the valence
electrons are confined in a smooth spherically sym-
metric potential well. In the bombardment experi-
ments the AgN

+ clusters are born ionized, so the mass
spectrum reflects the relative stabilities of charged
clusters in which the number of electrons is N - 1.
From the list given above, we find N - 1 ) 2, 8, 20,
34, 40, 58, ..., which reproduce the same shell closing
numbers of alkali clusters. Mass spectra of CuN

+ and
AuN

+ also show the same magic numbers. Further-
more, negatively charged clusters (CuN

-, AgN
-, AuN

-)
are produced by the same technique, and their magic
numbers are N ) 7, 19, 33, 39, 57, ..., but we can
notice that those clusters again contain N + 1 ) 8,
18, 34, 40, ... electrons. Measurements of the ioniza-
tion potential of Cu clusters by Knickelbein21 show
the expected drops after the electronic shell closings.

Photoelectron spectroscopy (PES) studies of cluster
anions (CuN

-, AgN
-, AuN

-) give direct information on
the structure of the spectrum of electronic energy
levels. In these experiments a cluster anion is irradi-
ated with laser light of fixed photon energy pw. The
photon removes an electron from the least bound
molecular orbital or from a deeper orbital. The
difference pw - Ekin, where Ekin is the kinetic energy
of the detached electron, gives a direct measurement
of the binding energy of the orbital. The structure of
the spectrum is very rich and every cluster species
has its own fingerprint. The individual peaks arise
from photodetachment transitions between the ground
state of the anion and the ground and excited states
of the neutral cluster. The photoelectron “threshold”
(or energy to remove an electron from the least bound
orbital of the XN

- cluster) can be taken as an estimate
of the electron affinity EA. This quantity is the
difference

between the energies of neutral and the anionic
clusters. If the corresponding neutral cluster XN has
closed shells, the electron is ejected from the lowest
unoccupied molecular orbital (LUMO) of XN. Conse-
quently, the photoelectron threshold should reflect
the shell effects. Indeed, measured threshold detach-
ment energies of AgN

- 22 and CuN
- 23,24 show drops

between N ) 7 and 8 and between N ) 19 and 20,
which again indicate major shell closings (1S)2(1P)6

and (1S)2(1P)6(1D)10(2S)2, respectively. Encouraged by
these features, Penzar and Ekardt16 have applied the
spheroidal jellium model to Cu clusters. Over a wide
range of cluster sizes, the trend in the calculated
electron affinities agrees with experiment.

Since PES also probes deeper orbitals, a compari-
son with PES data allows for a more stringent test
of the validity of the jellium model. Cha et al.25 have
analyzed the region of the spectrum of CuN

- clusters
(with N ) 1-18) that is predominantly of s-like
character (4s derived orbitals). Nearly all observed
peaks can be qualitatively assigned to the electronic
shells of the ellipsoidal jellium model if one takes into

account additional effects such as shake up processes
(simultaneous excitation of bound electrons accom-
panying the photoemission process), multiplet split-
tings (caused by the spin-spin interaction of the
electrons in the cluster), and s-d hybridization (for
orbitals located close to the 3d band).

Chemical probes also point to electronic structure
that can be understood in terms of the spherical
jellium model. Winter et al.26 have recorded the mass
spectrum of Cu clusters generated by laser vaporiza-
tion of copper after these have passed through a flow
tube reactor with O2 added to the gas flow. The
observed result is that clusters Cu20, Cu34, Cu40, Cu58,
and Cu92 are unreactive toward O2, as well as several
others. The lack of reactivity is ascribed to the closed
shell electronic structure of these clusters that in a
sense reminds us the inert character of noble gases.

Despite the successful description of some features
of noble metal clusters by a jellium model that
neglects the d cores, the d electrons are required to
explain a large number of properties of noble-metal
clusters. The d electrons contribute to the bonding
in a crucial way. Calculations27 for doubly charge
silver clusters, AgN

2+, using the simple jellium model
indicate that the model underestimates the binding
energy of these clusters in comparison to experi-
ment,28,29 as a consequence of neglecting the d
electrons. The contribution of the d band to the
cohesive energy of noble metals is also well docu-
mented.1,30,31

C. d Electrons in Noble-Metal Clusters
The analysis in section II.B provides information

on the electronic structure near the top of the
occupied molecular states of the cluster. The next
question is how much deeper one can probe into the
structure of electronic levels of noble-metal clusters.
Smalley and workers24,32 have used ultraviolet elec-
tron spectroscopy (UPS) to probe the 3d electrons of
Cu cluster anions, CuN

-, with N up to 410. Probing
the d electrons requires high photon energies. They
found a large peak, roughly 2 eV higher than the
weak initial threshold, and this large peak moves
smoothly with cluster size. For the small clusters its
position merges with the position of the d levels of
the copper atom. For the large clusters, the peak
matches well with the sharp onset of the 3d band in
the UPS of bulk Cu. For all those clusters, it seems
safe to attribute this feature to the photodetachment
of primarily 3d-type electrons. Unlike the large size-
dependent variations of the UPS threshold, which is
associated to the 4s electrons (and gives the electron
affinity), the 3d feature shifts monotonically with the
cluster size: the 3d electrons are more core-like and
should be only mildly influenced by the details of the
cluster surface. The onset of the 3d band sharpens
as N increases, and this was interpreted as an
indication that the larger clusters may already be
crystalline.32

In the band picture of solid noble metals, the
valence band contains the localized d electrons as
well as the extended s electrons and s-d mixing is
substantial.1 The picture of valence electrons is then
far from that of the free electrons in alkali metals. It

EA ) E(XN) - E(XN
-) (7)
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is, therefore, intriguing how well the shell model also
works in noble metals. Fujima and Yamaguchi33 have
performed DFT calculations for CuN clusters with
sizes up to N ) 19 and a variety of model structures:
Cu6-octahedron, Cu8-cube, Cu12-icosahedron, Cu13-
icosahedron, Cu13-cuboctahedron, Cu15-rhombic do-
decahedron, Cu19-combination of cuboctahedron and
octahedron. An analysis of the molecular orbitals
(MO) shows that these can be classified into two
types. The first type is formed by MOs built from
atomic 3d orbitals. These span a narrow energy range
of a width comparable to that of the d band of the
solid and do not mix much with the second type of
MOs, which are derived from atomic 4s-4p orbitals.
The 3d charge is localized around atoms, whereas the
sp charge is extended over the whole cluster. Fujima
and Yamaguchi related their results to the shell
model. Disregarding the MOs with d character on the
atoms, the sequence of the remaining MOs can be
reproduced rather well by considering a spherical
model potential with a small anharmonic term (this
is essentially the form of the effective potential one
obtains in the spherical jellium model). However,
when the cluster lacks a central atom, as is the case
of the icosahedral structure of Cu12, a 3-dimensional
Gaussian potential barrier had to be added to simu-
late the missing atom. The good one-to-one cor-
respondence between the energy levels of the full ab
initio calculation and those of the simple model
potential leads to the explanation of why the shell
model is applicable to Cu clusters. The d band is
located in energy between the 1S and the 1P levels
of the shell model for 3 e N < 8 (more precisely,
between the MOs with overall symmetries compa-
rable to those of the 1S and 1P jellium orbitals),
between the 1P and 1D levels for 9 e N < 18,
between the 1D and 2S levels for 19 e N < 20, and
so on. The d levels are always filled. Massobrio et
al.34 have performed more accurate DFT calculations
for CuN clusters, although only for N e 10. The
equilibrium geometries were obtained by minimiza-
tion of the energy with respect to all the nuclear
coordinates using the Car-Parrinello ab initio mo-
lecular dynamics method.35 The structures obtained
for Cu6 (pentagonal pyramid; C5v symmetry) and Cu8
(D2d symmetry) are less symmetric than the model
structures assumed by Fujima and Yamaguchi. Mas-
sobrio et al. obtain, in general, ground-state and local
minimum structures similar to those of NaN, al-
though CuN clusters tend to prefer more compact
arrangements. The angular decomposition of the
electronic wave functions shows that these bear some
relation to the shell model, although this character
is significantly less pronounced than in NaN clusters.
The degree of s-d hybridization observed in the
calculations of Massobrio et al. appears to be larger
compared to Fujima and Yamaguchi. A likely reason
is the more symmetric geometries assumed by the
later authors. This view of the interplay between s
and d electrons in noble-metal clusters will be very
useful later on when discussing some features ob-
served in the magnetism of Ni clusters.

Massobrio et al.36,37 have extended their first
principles calculations to interpret the photoelectron

spectra of CuN
- clusters measured by Cha et al.25 Two

factors were found crucial to bring theory in close
agreement with experiment. The first is the accurate
determination of the equilibrium atomic geometries
of the anionic clusters. A linear chain was obtained
for Cu3

-, a planar trapezoidal configuration (C2v) for
Cu5

-, two nearly degenerate isomers with C3v (capped
octahedron) and D5h (pentagonal bipyramid) sym-
metries, respectively, for Cu7

-, and a bicapped pen-
tagonal bipyramid (C2 symmetry) for Cu9

-. Simple
consideration of the electronic density of states
obtained from the calculated single-particle eigen-
values was found inadequate to interpret the photo-
electron spectrum because the one-electron picture
neglects the interaction between the hole created by
the removal of one electron and the rest of the
system. So the second key factor is the inclusion of
final state effects. To account for these, vertical one-
electron excitation energies were calculated as a
difference of self-consistent total energies (∆SCF) in
the context of DFT, that is ∆Eexc

SCF(k) ) Efin
SCF(k) -

Einit. Here Einit is the total energy of the initial state
of CuN

-, characterized by occupations (n1...nk...nM) of
the M cluster eigenstates and Efin

SCF(k) is the total
energy when an electron has been removed from a
given state k. This energy is obtained in a constrained
calculation for the configuration (n1...nk-1...nM) in
which the wave function of the kth eigenstate is kept
frozen whereas the other wave functions are allowed
to relax. In this way the screening effect is included
(although the relaxation of the hole is not). With this
∆SCF procedure a consistent interpretation of the
photoelectron spectra of Cu3

-, Cu5
-, Cu7

-, and Cu9
-

was achieved. The early interpretation by Cha et al.25

in terms of the ellipsoidal jellium model remains valid
to a large extent, although the cluster states display
increased hybridization. The comparison with experi-
ment supports the C3v geometry for Cu7

-. With an
additional simplification in the treatment of final
state effects, Massobrio et al.37 were also able to
account for finite temperature effects. They ran
molecular dynamics simulations for Cu7

- at T )
300-400 K and took temporal averages of the density
of states and of the excitation energies. Thermal
broadening led to a splitting of the first peak in the
calculated photoelectron spectrum of this cluster,
whose magnitude agrees well with the experimental
splitting of 0.12 eV.

Although only DFT calculations have been re-
viewed above, work has also been performed for
clusters of coinage metals using quantum chemical
methods. Bauschlicher and co-workers have studied
dimers, trimers, tetramers, and pentamers, neutral
and negatively charged, with the purpose of calculat-
ing electron affinities.38-41 For the Cu clusters they
performed all electron calculations, but the relativ-
istic effective core potential (RECP) developed by Hay
and Wadt42 was used for Ag and Au. Electronic
correlation was accounted for by performing modified
coupled pair functional (MCPF) calculations43,44 based
on a SCF reference configuration and SCF molecular
orbitals. All the neutral homonuclear triatomics have
ground-state structures that are a slight Jahn-Teller
distortion away from an equilateral triangle. A linear
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isomer lies higher in energy, for instance, 0.28 eV in
Cu3. However, the corresponding negative-ion trimers
have a linear structure, formed by attaching the extra
electron into the singly occupied σu orbital of the
neutral linear isomer. This orbital has bonding
character. Hence, the linear structure becomes fa-
vored over the triangular structure that involves
attaching the extra electron into a nonbonding e′
orbital. The neutral tetramers have a planar rhom-
bus structure, and the pentamer is a planar trap-
ezoid,41 in analogy with simple alkali clusters.45 The
optimized structures of the negative tetramer ions
are very similar to those of the neutrals. The case of
the pentamer is controversial. Electron spin reso-
nance (ESR) experiments for Cu5 and Ag5 were first
interpreted as suggesting that the ground-state
geometry is a distorted trigonal bipyramid.46-48 This
structure is consistent with the observation that
there are three kinds of atoms and that one of the
pairs has a much larger spin density than the other
atoms. Bauschlicher and co-workers41 then noticed
that the spacial distributions of the open-shell densi-
ties in planar trapezoidal Ag5 and Cu5 are consistent
as well with the spin densities from the ESR experi-
ment. The observed odd-even oscillation of the
electron affinity of Cu and Ag clusters with cluster
size22,25 was interpreted in terms of the bonding
character of the molecular orbital occupied by the
additional electron: that electron occupies an anti-
bonding orbital in Cu2

- and Cu4
- while for Cu3

- and
Cu5

- it goes to a bonding orbital. The calculated
values of the electron affinities underestimate the
measured ones, but excellent agreement can be
obtained by scaling the theoretical values by a factor
of 1.3. A lower scaling factor of 1.09 also brings
agreement for the ionization potentials.

Heteronuclear dimers and trimers were also stud-
ied.41 The optimal structures of the neutral trimers
are triangular, as for the homonuclear ones. For the
only negative trimer studied in detail, Ag2Au-, the
structure was linear so a linear structure is expected
for all other heteronuclear trimers, again in agree-
ment with the homonuclear case. To a good ap-
proximation the electron affinities of the heteronu-
clear trimers can be predicted from a weighted
average of the corresponding homonuclear systems.

Akeby et al.49 have studied CuN
- cluster anions

with N up to 10. Cu was treated as a one-electron
atom, and the core, including the 3d electrons, was
described by an effective core potential.50 The calcu-
lations were performed at the CI (configuration
interaction) level. Core-valence correlation effects,
which were found to be crucial for obtaining quan-
titative results and also in the search for geometries,
were included through a core-polarization potential.51

Further approximations were that nearest-neighbor
distances were fixed at the bulk metal value, and fine
optimization of the different isomeric geometries was
not allowed. The assignment of ground-state geom-
etries was made by taking into consideration not only
the calculated binding energies, but also a compari-
son of the vertical affinities and HOMO-LUMO gaps
with the experimental values.23,24 In most clusters,
but not always, the assigned ground-state isomer

coincides with that having the highest binding en-
ergy. Unsurprisingly the structures are often quali-
tatively similar to those of anionic lithium clusters.52

The calculated binding energy of Cu2
- is 0.99 eV. This

is substantially smaller than the experimental bind-
ing energy of 1.57 ( 0.06 eV,23 and the binding
energies of the larger clusters are also expected to
be underestimated as a consequence of neglecting d
bonding, already discussed at the end of section II.B
in the context of the jellium model. This missing
d-bonding contribution is evident from a comparison
of the binding energy of Cu2

- with that obtained in
an all-electron calculation.39 The all-electron result
is 1.31 eV. For the assigned ground-state geometries,
the vertical EAs follow the experimental trend pre-
cisely as a function of N, with an overall shift to
smaller values.

AgN clusters (N ) 2-9) and their positive and
negative ions have been studied by Bonacic-Koutecky
and co-workers,53,54 who give extensive reference to
previous work. An effective core potential that ac-
counts for relativistic effects and core-valence cor-
relation was used for Ag, which was treated as a one-
valence-electron atom. Cluster geometries were
optimized at the Hartree-Fock level and sometimes
using the complete active space SCF method. For the
different isomers obtained in this way, explicit cor-
relation treatments for the 5s electrons were carried
out using a multireference SCF procedure to recal-
culate energies. The CI calculations allow one to draw
conclusions about the influence of the net charge on
the geometry. Concerning trimers, only the anionic
one, Ag3

-, is linear whereas the neutral and cationic
trimers are planar. All cationic clusters larger than
tetramers assume three-dimensional (3D) geom-
etries, starting with Ag5

+, which is a trigonal bipyra-
mid. However, the competition between 2D and 3D
structures is more pronounced for neutral and an-
ionic clusters. Ag5 and Ag5

- are still planar (trap-
ezoidal), and Ag6, which marks the transition to 3D
structures in the neutral case, is a “flat” pentagonal
pyramid. 3D structures of anion clusters also begin
with Ag6

-, which is a bicapped deformed tetrahedron.
The net charge also influences the precise 3D geom-
etries adopted for N g 7. As seen, the predictions for
small clusters agree with the work of Bauschlicher.41

Binding energies per atom increase with cluster size
and indicate a slight higher stability of systems with
eight valence electrons. This becomes confirmed by
a local maximum of IP at Ag8 and a large drop
between Ag8 and Ag9 and also by the pronounced
minimum of EA at Ag8. The measured photodetach-
ment spectra55,22 of AgN

- anions were compared with
the calculated vertical detachment energies and with
the energies of the excited states of the neutral
species at the geometries of the anions. This allowed,
in all cases, an unambiguous assignment of the
anionic cluster geometries, which confirmed the
results of the total energy optimizations. In particu-
lar, an outstanding agreement between theory and
experiment was achieved for the vertical detachment
energies.

The theoretical works described above, studying
the detailed structure of noble-metal clusters by DFT
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and quantum chemical methods, are restricted to
small clusters. Recent work points to a controversial
situation concerning the structure of medium size
and large gold clusters. X-ray powder diffraction
studies of AuN nanoclusters of sizes N ) 38, 75, 101,
146, 200, 225, and 459 grown with passivating
organic molecules have been interpreted as revealing
ordered structures with an underlying fcc lattice:
truncated octahedra for N ) 38, 225, and 459 and
truncated decahedra for the rest.56 But Garzon and
co-workers57 have performed calculations using
semiempirical many-atom potentials whose results,
corroborated by DFT calculations,58 indicate instead
that the structures for many sizes between N ) 38
and 75 are disordered. For two cases studied in detail,
Au38 and Au75, calculated structure factors for those
disordered structures agree as well with experiment
as the structure factors from the fcc-ordered ones.

III. General Bonding Properties in Clusters of
Transition Metals

One of the recurrent themes in the physics and
chemistry of clusters is the study of similarities and
differences between the properties of clusters and
those of the corresponding bulk material. The beauty
of clusters comes from the fact that their properties
are not only size dependent but that this size varia-
tion is nonmonotonic. This size-specificity has enor-
mous potential interest for technological applications.
On the other hand, one should also recognize that
some trends along groups or across periods of the
periodic table are already imprinted in clusters with
only a few atoms. This is the case for crystal cohesive
properties of 3d and 4d metals. Painter59 has per-
formed DFT calculations for small clusters of 3d
elements. To remove specific variations due to sym-
metry and size effects, Painter constrained the
clusters to have six atoms in fixed symmetry. This
was selected to be octahedral since it defines a lattice
fragment component of the fcc, bcc, and hcp transi-
tion-metal lattices. Interatomic bond lengths were
allowed to relax. The 3d metals exhibit a broad
spectrum of mechanical properties.1 The experimen-
tal cohesive energy Ec of Sc is 3.90 eV/atom.60 This
quantity increases for Ti and has a maximum for V.
After this maximum it decreases, showing a mini-
mum for Mn (2.92 eV/atom). Ec increases again to
the right of Mn, having a broad maximum for Fe, Co,
and Ni, and finally it decreases again for Cu. The
trend of the Wigner-Seitz radius RWS is simpler. RWS
has a roughly parabolic behavior (lower values in the
middle of the series) with Mn deviating, although
rather weakly, having a value of RWS slightly larger
than the interpolated value. This small deviation
reflects the minimum of Ec. These trends have been
reproduced by DFT band calculations for the bulk
metals performed by Moruzzi et al.,61 except for some
weak deviations from the trend to be discussed below.
Painter demonstrated that the trends in the binding
energy and interatomic distance of the octahedral
clusters reproduce the experimental trends for the
solid metals well, with small deviations that are,
precisely, the same as those found for the DFT bulk

calculations: the first maximum of Ec occurs for Ti
(instead of V), the second maximum for Co (instead
of Ni), and nearly equal values occur for Cr and Mn
(instead of a clear minimum for Mn). Those differ-
ences with respect to the experimental trend, since
they occur for both bulk and cluster calculations, are
ascribed to the LDA approximation used for exchange
and correlation. Of course, although the trend is well
reproduced, the binding strength is lower for clusters.
Interatomic distances are also smaller. The conclu-
sion is that the trend in the cohesive energy origi-
nates largely on the localized near-neighbor interac-
tions present within the primitive cluster itself.

A similar study was done by Zhang et al.62 for
clusters of 4d elements. Again, a model of a regular
octahedral cluster with six atoms was employed, and
the clusters were allowed to relax radially. The
calculated binding energies per atom and the dis-
tance d from the atoms to the cluster center are given
in Table 1. Going across the 4d period, the binding
energy Eb presents two maxima, at Zr and Tc,
respectively, separated by a minimum at Mo. Fur-
thermore, Eb drops to rather small values near the
end of the period, for Ag and Cd. This is also the
general behavior of the experimental cohesive energy
of the bulk metals.60 The only small differences are
that the first maximum for the bulk metals occurs
for Nb (instead of Zr) and the second maximum for
Ru. It is convenient to stress that the metals Tc and
Ru have very similar cohesive energies and Tc6 and
Ru6 have very similar binding energies, so the
discrepancies are very minor and one can conclude
that a good qualitative correspondence exists between
clusters and bulk concerning the variation of binding
energy across the 4d period. The measured Wigner-
Seitz radii also have a simple parabolic variation with
a minimum around the middle of the period, and the
calculated interatomic distances and distance D of
Table 1 roughly agree to this behavior. The nearly
parabolic behavior of Eb is a consequence of the
change from bonding to antibonding character of the
d orbitals as the d-band filling increases. Also, in the
same way as for the 3d clusters, binding energies and
interatomic distances are smaller than in the bulk.
There is also a striking correlation between the width
of the occupied valence band in clusters and bulk
metals.62 Although the width of the band of the
clusters is smaller, a parabolic variation between Y
and Pd is calculated in both cases, whereas Ag and
Cd follow a completely different trend because the

Table 1. Calculated Binding Energy Per Atom Eb,
Distance D from the Atoms to the Center of the
Cluster and Average Magnetic Moment Per Atom µj
for Octahedral (X6) Clusters62

cluster Eb (eV) D (au) µj (µB)

Y 3.53 4.40 0.00
Zr 5.23 3.96 0.33
Nb 5.07 3.64 0.67
Mo 4.05 3.40 0.33
Tc 4.91 3.36 0.33
Ru 4.70 3.40 1.00
Rh 4.03 3.48 0.99
Pd 3.14 3.50 0.00
Ag 1.56 3.76 0.33
Cd 0.39 4.48 0.00
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4d band is filled in those two cases and the 5s-derived
band of nearly free electrons is very broad.

IV. Electronic Structure of Clusters of Transition
Metals

For very small clusters, diffraction techniques are
not useful to elucidate their structure but theoretical
calculations can be performed with some confidence
because a complete minimization of the total energy
with respect to all the atomic positions can be
performed using methods based on the DFT formal-
ism. A few representative examples are now dis-
cussed.

A. Nickel Clusters
Reuse and Khanna63 have employed an LCAO

molecular-orbital approach within the DFT formal-
ism to study NiN (N ) 2-6, 8, 13). The local spin-
density approximation (LSDA)14 was used for ex-
change and correlation effects, and the inner cores
were replaced by nonlocal pseudopotentials. Their
main results are that the binding energy varies with
size in a nonmonotonic way and that all the clusters
have nonzero spin in their ground state (magnetic
properties will be discussed in more detail later). Up
to five atoms, Reuse and Khanna tried several
starting geometries and performed structural relax-
ations, allowing the cluster to distort in order to
minimize the energy. The ground-state structures are
plotted in Figure 1. For Ni2 they found the ground
state to have a total spin S ) 1 with a bond length of
3.78 au and binding energy Eb of 3.32 eV (or 1.61 eV/
atom). The spin S ) 1 is consistent with early
measurements on matrix isolated clusters.64 The
experimental bond length is between 4.07 and 4.16
au, and the estimated binding energy is 2.1 eV.65,66

The errors are typical of the LDA: an overestimation
of the binding energy and a contraction of the bond
length. The geometry of Ni3 in a solid argon matrix
is C2v with an apex angle estimated between 90° and
120°.67 Some previous calculations had given instead

a linear ground state.68 Reuse and Khanna obtain a
C2v ground state with S ) 1 (the same as in the
experiment) but with an apex angle of only 61°. The
calculated binding energy is 1.96 eV/atom. They also
found C2v (S ) 2) and linear (S ) 2) isomers, higher
in energy (0.03 and 0.05 eV/atom, respectively) than
the ground state. Two degenerate structures (binding
energy of 2.34 eV/atom) form the ground state of
Ni4: one is a compact D2d geometry and the other is
a square and both have S ) 3. For Ni5, the ground
state is a triangular bipyramid with S ) 4 and Eb )
2.83 eV/atom. This triangular bipyramid is 0.2 eV/
atom more stable than a square pyramid. For larger
clusters, the structural study was restricted. An
octahedron, which is a fragment of the fcc lattice, was
initially assumed for Ni6, although this was allowed
to distort by permitting different Ni-Ni bond lengths
in the central square and between apex and central
atoms. The octahedron showed only minor distor-
tions, and the ground state has S ) 3 and Eb ) 3.27
eV/atom. This was exactly the binding energy ob-
tained for Ni8, for which only a perfect cube geometry
was studied (S ) 4). Finally, for an icosahedral
structure of Ni13 (only structure studied), S ) 4 and
Eb ) 4.26 eV/atom were obtained. States with S ) 5
and 6 were marginally above this state. The geom-
etries up to Ni6 have been confirmed by other DFT
calculations.69,70 An extensive study of the low-lying
electronic states of Ni2 has been performed by Mich-
elini et al.71 These authors also studied different
conformational isomers in Ni3 and Ni4, taking care
in distinguishing between true local minima and
saddle points through a vibrational analysis.

These results reveal the complexity of clusters of
transition metals: there are normally several low-
lying states with very close energies. One of the
reasons is the competition between (i) compact struc-
tures maximizing the number of bonds and (ii)
directional bonding compatible with the orientation
and filling of the d orbitals. Let us consider two
illustrative examples. The triangular C2v configura-
tion of Ni3 optimizes the number of bonds but forces
d orbitals into a symmetry which is not optimal for
their bonding (the d orbitals in an atom have a square
symmetry). In contrast, the linear geometry of Ni3
permits undistorted d-orbital combinations to form
but it has fewer bonds. The ab initio calculations
show that the linear isomer is only marginally less
stable. The second example is Ni4, for which a similar
competition exists between a compact D2d structure
(a rhombus bent into a butterfly structure) and a
planar square. Again, both structures are equally
stable.

Using the binding energies, Reuse and Khanna
have calculated fragmentation channels, that is, the
energy required to break the NiN cluster into two
fragments

of sizes M and N-M. The channel requiring less
energy is always the loss of a single atom (M ) 1),
except for Ni4, which prefers to dissociate into two
Ni2 clusters. The fragmentation energies amount to

Figure 1. Ground-state structure of small nickel clusters
(Ni3-Ni7) obtained by DFT.63,73 Two nearly degenerate
isomers are shown for Ni4 and Ni7.

NiN f NiM + NiN-M (8)
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3.21, 2.68, 2.92, 4.81, and 5.47 eV for Ni2, Ni3, Ni4,
Ni5, and Ni6, respectively, so Ni3 has the lowest
fragmentation energy. These results agree with col-
lision-induced fragmentation experiments.72

Ni7 was studied in detail by Nayak et al.73 Experi-
ments analyzing the reactivity with N2 suggest that
the structure of this cluster is an octahedron with
an atom capping one of its faces,74 while early ab
initio calculations had predicted a pentagonal bipyra-
mid.75 Nayak et al. first noticed that the pentagonal
bipyramid is also consistent with a part of the
reactivity results, so those experiments do not com-
pletely rule out the pentagonal isomer. Nayak et al.
then optimized both structures using DFT and found
that these are nearly degenerate within the precision
of their calculation (total binding energies of 3.70 eV/
atom for the capped octahedron and 3.65 eV/atom for
the bipyramid). Surprisingly the magnetic moment
was the same for both isomers, 1.14 µB/atom (µB )
Bohr magneton), in fair agreement with the experi-
mental result of 1.53 µB/atom.76 To get further insight
into the stability of those two isomers, they performed
molecular dynamics simulations using the many-
body interatomic potential of Finnis and Sinclair.77

This potential has the form

where

and rij is the distance between atoms i and j. The
constant a is the bulk lattice constant, c is a dimen-
sionless parameter, ε is a parameter with dimensions
of energy, and the exponents m and n are integers.
The square root term in the attractive part of the
potential accounts for the many-body character of the
interaction. For Ni, the parameters have been ob-
tained by fitting to bulk and repulsive and attractive
interactions are governed by the values n ) 9 and m
) 6, respectively. The Finnis-Sinclair potential
predicts that the two structures of Ni7 are nearly
degenerate within the accuracy of the calculation, but
the MD simulations show that the catchment area
for the capped octahedron is much higher than that
for the pentagonal bipyramid. In summary, neither
the chemical reactivity nor the magnetic experiments
are inconsistent with the presence of the two isomers
in a molecular beam. The results were confirmed by
Desmarais et al.,78 who performed a more complete
study of Ni7 (and Ni8 also). A number of different
geometries were investigated within the DFT formal-
ism, and the possible Jahn-Teller distortions were
examined. The ground state of Ni7 was a capped
octahedron, and a pentagonal bipyramid (Jahn-
Teller distorted) was found as the first low-lying
isomer, 0.07 eV/atom above the capped octahedron.
The ground state of Ni8 was a distorted bisdisphenoid
structure with D2 symmetry (it can be seen as a
rectangular Ni4 cluster with a dimer above the first

diagonal of the rectangle and another dimer below
the second diagonal), and several isomers (capped
pentagonal bipyramid, bicapped trigonal prism, star,
cube, and square antiprism) lie close to each other
within a range of only 0.07 eV/atom above the ground
state.

Ni13 was subsequently studied in more detail by
Reuse, Khanna, and Bernel.79 Clusters with perfect
icosahedral (Ih) and cuboctahedral (Oh) shapes (the
cuboctahedron is a piece of an fcc crystal) were first
optimized with respect to their radial size for several
possible spin configurations. The lowest energy is
obtained for the icosahedral geometry and S ) 4 (Eb

) 4.23 eV/atom). The HOMO has a degeneracy of five
and is occupied by only three electrons. The cluster,
therefore, prefers a Jahn-Teller distortion, and by
allowing all the interatomic distances to vary inde-
pendently, the cluster distorts to a D3d symmetry,
producing an increase in the binding energy of 0.16
eV. The distortion is nevertheless very small, and the
total spin does not change. S ) 4 corresponds to a
magnetic moment µj ) 0.61 µB per atom.

The isomerism that occurs in small Ni clusters may
have a role on the interpretation of the photodetach-
ment spectra of cluster anions. In the photodetach-
ment process, a transition occurs from the cluster
anion in its ground electronic state to a state of the
neutral cluster with the same geometry of the anion.
According to the ab initio calculations,80 Ni2

- has two
isomers with slightly different bond lengths (d ) 2.19
and 2.21 Å, respectively). The binding energies are
very close (2.38 and 2.35 eV, respectively), and the
spin multiplicities (2 and 4, respectively) are differ-
ent. The study of neutral Ni2 clusters with the same
bond lengths as the anions gave triplet and singlet
states for d ) 2.19 Å and triplet and quintet states
for d ) 2.21 Å. The photodetachment spectrum of
Ni2

- measured by Ho et al.66 identified four groups
of electronic transitions: band X (0.9 eV), band I
(1.7-2.1 eV), band II (2.1-2.9 eV), and band III (g2.9
eV). The spectrum was interpreted by Weber and
Jena80 as having contributions from those two nearly
degenerate anionic states. Band I was assigned to
transitions from Ni2

- (doublet) to neutral Ni2 (triplet)
and also from Ni2

- (quartet) to neutral Ni2 (triplet).
Band II was assigned to transitions from Ni2

- (quar-
tet) to Ni2 (quintet), and band III was assigned to
transitions from Ni2

- (doublet) to Ni2 (singlet). The
origin of band I was left unassigned.

Ni3
- also has two structures, linear and triangular,

nearly degenerate (atomization energies of 5.04 and
5.01 eV, respectively) and with the same spin mul-
tiplicity (both are quartets), although a barrier of 0.8
eV separates those two structures. Consideration of
the two Ni3

- isomers and of different spin states of
the corresponding neutrals helps to interpret the
photodetachment experiments for this cluster.81

Reuse and Khanna82 have calculated the photoab-
sorption spectrum of NiN clusters with N ) 2-6 and
13 in the context of DFT. The clusters geometries
were taken from their earlier work.63 Using first-
order perturbation theory in the framework of quan-
tum electrodynamics, the total photoabsorption cross

V ) ε∑
i [12∑

j*i( a

rij
)n

- cFi
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section σ(Ω) can be expressed

taking into account the dipolar electric approximation
for the interaction between photons and the electrons
in the cluster. In this equation, pω represents the
energy of the incident photon, R is the fine structure
constant, Efi ) Ef - Ei is the energy of the transition
between the initial |i〉 and final |f〉 electronic states
of the cluster. Pfi is the matrix element of the dipole
operator P between the initial and final states. This
equation is already averaged with respect to all
orientations of the cluster and then with respect to
polarization of the incident photon. The ground state
|i〉 and the excited state |f〉 were described by Slater
determinants built from Kohn-Sham orbitals: the
Slater determinant of the ground state is built from
occupied orbitals and that of the excited state is
constructed by moving an electron from an occupied
orbital to an initially unoccupied orbital with the
same spin. The results for σ(ω) reveal several inter-
esting features. (1) The spectrum becomes richer as
N increases. (2) The positions of the main peak (most
intense transition) and secondary peaks in the spec-
trum change with size. (3) Two isomers were consid-
ered for Ni4. The square isomer has a main peak at
3.09 eV and the D2d isomer at 3.36 eV. This indicates
that the photoabsorption spectrum can provide a
fingerprint for the geometry, as also pointed out for
alkali clusters and semiconductor clusters.83

B. Iron Clusters
Ballone and Jones84 have studied small Fe clusters

using ab initio DFT molecular dynamics. It is inter-
esting to compare their results, given in Figure 2,
with those for NiN discussed above. The ground state
of Fe3 is an equilateral triangle (C3v symmetry) with
S ) 4, bond length d ) 4.04 au, and binding energy
Eb ) 3.04 eV/atom. For comparison, we recall that
the triangle is not equilateral for Ni3 and its total
spin is lower, S ) 1. Low-lying isomers, with the
same geometrical structure and different spins, S )
3 and 5, respectively, were also found, as well as a
high-lying C3v isomer with S ) 0 and a linear,
asymmetric form (the two bond lengths different). So,
similar to the case of Ni3, a variety of isomers are
found. Although earlier DFT calculations85,86 pre-
dicted for Fe4 a tetrahedral (Td) structure, the ground

state found by Ballone and Jones can be viewed as a
distorted tetrahedron opened up into a butterfly (C2v
symmetry), with S ) 6 and Eb ) 3.55 eV/atom. Two
low-lying isomers were found with S ) 7 (more open)
and 5 (more compact) and also a square isomer lying
0.74 eV/atom above the most stable C2v structure. The
C2v structure of Fe4 is rather similar to the D2d
structure of Ni4, but the planar isomer is less stable
in the Fe case. There is agreement between the
predictions of the structure of Fe5 by Castro86 and
Ballone:84 the lowest energy structure is a trigonal
bipyramid, with Eb ) 3.90 eV/atom and S ) 7. There
are several low-lying isomers with the same struc-
ture, although with different spin and interatomic
distances. Square pyramid and planar pentagon
isomers have smaller cohesive energies. Notice that
the ground state of Ni5 is also a trigonal bipyramid.
The ground state of Fe6 results from capping the
trigonal bipyramid. It has a binding energy Eb ) 4.01
eV/atom and spin S ) 10. An octahedron with the
two apex atoms compressed toward the midplane,
also with S ) 10, is only 0.02 eV/atom higher in
energy. Another isomer is a pentagonal pyramid with
Eb ) 3.90 eV/atom. These results suggest that the
capped trigonal bipyramid should be investigated for
Ni6. The lowest energy structure of Fe7 is a pentago-
nal bipyramid with S ) 11 and Eb ) 4.37 eV/atom.
Two isomers with S ) 11 and large binding energies
also exist: one is a tetrahedron capped on three of
its four faces (incomplete stellated tetrahedron), with
Eb ) 4.26 eV/atom, and the other is a bicapped
trigonal bipyramid (Eb ) 4.23 eV/atom). A capped
octahedron lies 0.25 eV/atom above the ground state.
The multitude of isomers with energies close to that
of the ground state means that those isomers could
be present together with the ground state in experi-
ments probing the reactivity or the magnetism of
those clusters. A conclusion from the DFT calcula-
tions for small Ni and Fe clusters is that compact
structures are more stable than open structures. This
is good news for methods modeling transition-metal
clusters using pairwise or semiempirical many-body
interatomic potentials. Spin plays a role in determin-
ing the most stable structures. Spin-restricted cal-
culations (neglecting the spin dependence of exchange
and correlation) lead to shorter bond lengths. The
large spin energies that result from unpaired spins
in transition elements often compensate for the
lowered occupancy of bonding orbitals that this
requires.

The ground-state structures of small NiN and FeN
clusters of the same size are remarkably similar. The
only significant difference occurs for N ) 7. The
pentagonal bipyramid and the capped octahedron are
nearly degenerate for Ni7, while the first structure
is significantly more bound than the second one for
Fe7.

C. Niobium Clusters
Nb is a nonmagnetic metal, and Nb clusters are

expected to be simpler than Ni or Fe clusters, so it is
interesting to compare their geometries. Goodwin and
Salahub87 have performed spin-polarized DFT cal-
culations for clusters containing up to seven atoms

Figure 2. Ground-state structure of small iron clusters
predicted by DFT:84 Fe3 (C3v), Fe4 (C2v), Fe5 (D3h), Fe6 (C1),
Fe7 (D5h). Compare with Figure 1 for Ni.
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using model core potentials88 and both LDA and
nonlocal GGA (generalized gradient approximation)89

exchange-correlation functionals. The dimer had a
triplet ground state with spectroscopic constants in
excellent agreement with other theoretical calcula-
tions and in reasonable agreement with the scarce
experimental data. The bond dissociation energies
are 5.8 (local) and 5.4 eV (nonlocal), and the last one
is in better agreement with experiment (5.2 eV). Bond
lengths are very similar: 2.08 (local) and 2.10 Å
(nonlocal). At the LDA level, Nb3 is an isosceles
triangle, like Ni3. The symmetry increases by ioniza-
tion since Nb3

+ is an equilateral triangle. Nb4 is
compact, a perfect tetrahedron whose bond length
simply expands upon ionization. Nb5 is a trigonal
bipyramid, like Ni5 and Fe5. Ionization again expands
the cluster volume and breaks the symmetry such
that only two bonds of the equatorial plane of the
bipyramid have the same length. Nb6 has the form
of a planar rhombus with two atoms above the basal
plane, aligned along the long diagonal. Finally, Nb7
is a distorted pentagonal bipyramid. In summary,
similarities with the structures of Fe and Ni clusters
are found. When the structures of Nb3-Nb5 were
reoptimized by performing GGA calculations, small
changes occurred that changed the bond lengths by
several hundredths of an angstrom and lowered the
cluster symmetries. The ground-state spin multiplici-
ties were not affected, and the binding energies were
reduced by some tenths of an electronvolt, bringing
these closer to the experimental values. A break in
the slope of the binding energies versus N indicates
that Nb4 is particularly stable, and the same conclu-
sion is obtained from the energy to remove one atom
from NbN, which has a maximum for Nb4. The
stability of Nb4 is displayed both by calculated and
experimental quantities.

The low energy differences between structural
isomers obtained in ab initio calculations introduces
small uncertainties in the prediction of the ground-
state geometry of small clusters. A reliable determi-
nation of cluster structure can be made by comparing
the photoelectron spectra, which are structure sensi-
tive, to theoretical predictions for different isomers.
In the case of NbN

- anions, the measured photoelec-
tron spectra have been compared90 to calculated
spectra for N ) 3-8 using the LSDA approximation.
The binding energies of the electrons in the cluster
were calculated in two steps. First these binding
energies were approximated by a generalized transi-
tion-state theory91

where εi(ν) is the energy eigenvalue of orbital φi
obtained in a self-consistent calculation with the
occupation number ni fixed equal to ν. This formula
can be viewed as an approximation to the ∆SCF
method, which evaluates the energy difference be-
tween the anion ground state and an excited elec-
tronic configuration of the neutral. For the particular
case of the lowest bound electron, the binding energy,
which is the electron affinity, can be obtained rigor-
ously in a different way, namely, by subtracting the

ground-state energy of the neutral cluster at the
anion equilibrium geometry from that of the anion.
Denoting this result Da

SCF, then all the binding
energies from eq 12 were shifted by

with typical values of this shift being ∆ ) 1.25 eV. A
number of isomers were obtained by starting with
many trial geometries, and the ground state had a
structure almost identical to that for neutral NbN, N
) 3-7. Then, for the ground state and all other
isomers, the excitation spectra were calculated ac-
cording to eqs 12 and 13 and compared to the
measured spectra. In general, the calculated lowest
energy structure produces an excitation spectrum in
substantially better agreement with experiment than
the spectra from other isomers, although the agree-
ment is far from perfect since the treatment of excited
states embodied in eqs 12 and 13 is too simple. Only
in two cases was the experimental spectrum assigned
to a low-lying isomer: for Nb3

- to an isosceles
triangle (instead of the equilateral triangle) and for
Nb5

- to a distorted trigonal bipyramid (instead of an
ideal one). But in both cases the energy difference
between those isomers and the ground state is small.
Evidence was also found for the coexistence of two
isomers of Nb8

- under some experimental conditions.
Fournier et al.92 have made a more exhaustive study
by testing other simple methods to take into account
final state effects in the calculation of the electron
binding energies.

The ionization potentials93 and the measured pho-
toelectron spectra of NbN

- have also been employed
to establish a correlation between electronic structure
and reactivity.94 The reactivities of neutral NbN
clusters with H2 show a simple pattern: Nb8, Nb10,
and Nb16 are relatively unreactive while the other
clusters readily chemisorb hydrogen. From the mea-
sured photoelectron spectra of NbN

-, Kietzmann et
al.94 determined the vertical detachment energies
(VDE), approximately equal to the electron affinities
of the neutrals. An even-odd alternation was ob-
served for sizes N ) 6-17, with high VDEs for odd
N and low VDEs for even N, and especially pro-
nounced minima for N ) 8 and 10. For N > 16, the
VDEs increase steeply with no even-odd alternation.
Even-odd alternation is usually observed in clusters
of simple metals with an odd number of electrons per
atom, and it means that the highest single-particle
level is nondegenerate and occupied by one or two
electrons. The free Nb atom has five valence electrons
in the electronic configuration 4d45s1. The even-odd
alternation indicates that the even numbered neutral
clusters (Nb8, Nb10, Nb12, Nb14, Nb16) have a closed
HOMO level and that the additional electron occupies
the LUMO, giving rise to a small peak at low binding
energy in the experimental PES spectrum. Instead,
when the HOMO is half-occupied (odd N), the extra
electron fills the HOMO and results in a high VDE
for the corresponding NbN

- clusters.
If the neutral cluster has closed electronic levels,

the HOMO-LUMO gap can be measured directly in
the photoelectron spectrum. Large HOMO-LUMO

Di
GTS ) -[εi(1) + 3εi(1/3)]/4 (12)

∆ ) Da
SCF - Da

GTS (13)
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gaps were found for N ) 8, 10, 16, consistent with
the pronounced local minima in the affinities. All the
features discussed above correlate precisely with the
measured reactivities with H2: the clusters with the
largest gaps (N ) 8, 10, 16) have the lowest reactivi-
ties. The reactivity of Nb10 with CO is also abnor-
mally small compared to other Nb clusters.95 In fact,
the relation of large gaps to low reactivities can be
achieved through the chemical index “hardness”:96 a
“hard” cluster or molecule should be unreactive. A
measure of the hardness of a cluster is given by97

the difference between the ionization potential I and
the electron affinity EA, and this difference is the
HOMO-LUMO gap. Nb15

- has a peculiar photoelec-
tron spectrum, very different from neighbor sizes.
This, plus the fact that the VDE increases steadily
and without odd-even oscillations for N > 16, was
interpreted by Kietzmann et al. as a possible indica-
tion of geometrical shell closing at N ) 15 (perhaps
a piece of bcc bulk formed by two coordination shells
around a central Nb atom). The evidence for this
early transition to the bulk structure is not too
strong, and theoretical calculations should be per-
formed to test this interpretation.

D. Titanium and Vanadium Clusters
The electronic structure of titanium clusters has

been studied using photoelectron spectroscopy of size-
selected cluster anions98 at photon energies of 3.49
and 4.66 eV. The outer electrons of the free Ti atom
are in a configuration 3d2 4s2. With only two d
electrons, the electronic structure of the clusters is
expected to be simpler than that for elements in the
middle or in the second half of the 3d series. Discrete
spectral features are only observed for TiN

- with N
e 8. In this range of very small cluster sizes, the
photoelectron spectrum changes from N to N + 1,
reflecting their molecular nature. Starting with Ti8

-,
the spectrum becomes simple. No sharp features
appear beyond this size; instead, a prominent feature
appears near the detachment threshold whose width
increases with N. The width is about 1 eV in the
range Ti20

--Ti50
-. This broad feature is similar to

the single broad feature in the valence photoemission
spectrum of the bulk metal, which has a width of
about 2 eV and is due to the 3d band.99,100 The
detachment threshold, which gives the electron af-
finity of the neutral cluster, displays an even-odd
oscillation below Ti8

- and a monotonic increase for
N larger than 8. For N larger than ∼30, the affinities
are fitted well by the relation

where WF is the bulk work function and R is the
cluster radius. R was estimated as R ) rcN1/3 with rc
) 2.49 au. This value of rc is smaller than the usual
metallic radius in the bulk and can simulate the
contraction of interatomic distances in small clusters.
The relation of eq 15 itself shows that the conver-
gence of EA to the bulk is not fast; for instance WF

) 4.33 eV, whereas EA(Ti64) ) 2.6 eV. The evolution
of the shape of the photoelectron spectrum was
interpreted by Wu et al.98 as an early metallization
of the clusters, perhaps due to close-packed struc-
tures. A pronounced narrowing of the PES feature
occurs for Ti55

-. This and the results for the dissocia-
tion energies of small TiN

+ clusters101 suggest that
some of those clusters could be icosahedral.

The electronic configuration of atomic vanadium
is 3d34s2, with one d electron more than Ti. The PES
spectra, measured by Wu et al.102 for VN

-, N e 65, at
a photon energy of 4.66 eV, are more interesting
compared to TiN

-. The clusters can be separated in
four size regions. Up to V12

- the spectrum is molec-
ular-like, with a number of discrete well-resolved
features. V13

--V16
- form a transition region from

discrete spectra to a two-band spectra. For V17
- the

first of those two features is narrow and peaks at 2
eV (near threshold) and the second band is broad and
centered at a binding energy of about 3.2 eV. Between
V17

- and V60
- the two features converge to a single

broad feature, and finally, for N > 60 the PES
changes very little with N. PES spectra were also
recorded at a higher photon energy of 6.42 eV, and a
new broad peak appears for V17

- and larger clusters
at a binding energy of 5.2 eV, of course inaccessible
to the previous photon energy of 4.66 eV. Wu et al.102

have correlated this feature and the other broad
feature near 3.2 eV with similar broad features
observed in the PES spectra of bulk vanadium.103 Wu
et al.102 proposed that these bulklike effects have
their origin in the inner region of the clusters,
suggesting that the clusters may already have struc-
tures similar to the bulk crystal lattice. Conse-
quently, they interpret the sharper peak that emerges
from V13

- and gradually merges with the broad peak
as due to the cluster surface. This interpretation
suggests that starting from V13 the cluster already
has surface and inner parts and starting from V17
the inner region has some similarity with the bulk.
The sharp peak is most likely due to states derived
from the s atomic orbitals and the broad feature due
to the d states. As the cluster size grows, the d band
widens and the two features merge: the density of
states of bulk vanadium near the Fermi level is
mostly of d character.61 In contrast to titanium, the
EAs of very small vanadium clusters do not show
odd-even effects. EA has local minima for V5 and
V12 and maxima for V4 and V10. The affinities become
smooth for N g 17 and are fitted extremely well by
the metallic drop model of eq 15. Iseda et al.104

extended the photoelectron measurements for vana-
dium cluster anions up to N ) 100.

Minemoto et al.105 have studied the electronic
structure of V4

+ by optical absorption spectroscopy.
Using a technique developed by Knickelbein106 and
Collings et al.,107 the experiment measures the in-
tensity depletion of the complex V4

+ Ar against the
wavelength of the irradiation laser. The spectrum
thus obtained is treated as the optical absorption
spectrum of the underlying cluster V4

+ because the
rare gas atom is weakly attached and does not
significantly affect the geometry and the electronic
structure of V4

+. The measured spectrum was simu-

η ) I - EA (14)

EA ) WF - 5e2

8R
(15)
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lated by calculations based on DFT with the LSDA
approximation. The transition energies between the
ground state and the excited states concerned were
computed by the transition-state method of Slater.108

The intensity of a given absorption transition was
obtained from its oscillator strength, calculated from
the transition-dipole matrix element between the
initial and final one-electron wave functions. Finally,
the absorption spectrum was constructed by super-
imposing all the transitions widened with a Lorent-
zian profile. Several plausible geometrical structures
were examined: a distorted tetrahedral structure
with C2v symmetry, a tetrahedron (Td), a rhombus
(D4h), and a parallelogram (D2h) of varying bond
lengths, and only the first one is able to reproduce
the experimental spectrum reasonably, although not
perfectly. An extensive check for the lowest energy
structure of V4

+ with the ADF code109 (this is a DFT
code) confirmed that the C2v structure is the ground-
state isomer. The relatively broad widths (0.2 eV) of
the measured absorption peaks were assigned to
vibrations related to a specific deformation coordinate
that connects the C2v and Td structures.

E. Chromium Clusters

Small chromium clusters show peculiarities that
make them special compared to other 3d clusters. The
free atom has the electronic structure 3d54s1 with six
unpaired valence electrons. This half-filled electronic
configuration leads to strong d-d bonding in Cr2 with
an unusually short bond length: 1.68 Å,110-112 com-
pared to 2.50 Å in the bcc solid.60 Such a short bond
length was first measured in a flash photolysis
experiment.110 DFT calculations by Cheng and Wang113

show that this dimer is a closed-shell system with a
strong sextuple bond. The strong bonding arises from
the filling up of the 3d-bonding molecular orbitals:
σ3d

2π3d
4δ3d

4σ4s
2 1∑g

+. This electronic structure is very
robust and controls the growth of small CrN clusters,
as concluded by Cheng and Wang who have per-
formed calculations for clusters up to N ) 15. The
geometries were fully optimized from Cr3 to Cr12, and
for reasons given below, the structures of Cr13-Cr15
were restricted to be fragments of a bcc lattice. The
structures up to Cr11 are given in the insets in Figure
3. Cr3 is composed of a dimer plus an atom: the
electronic structure of the dimer is virtually un-
changed and the third atom surprisingly remains in
its atomic electronic state leaving six unpaired
electrons in the cluster. This view is confirmed by
the charge density plots. An additional atom pairs
up with the third one, and Cr4 is formed by two
dimers with strong internal bonds and weak inter-
dimer bonding. The dimerization effect controls the
growth of CrN up to N ) 11: all those clusters are
formed by Cr2 dimers with a short bond length and
one (in Cr5, Cr7, Cr9) or two (in Cr10) isolated atoms
bonded to adjacent dimers. The strong bonds in the
dimers are indicated by the heavy lines in Figure 3.
Cr11 has a structure similar to that of Cr10 with a
third isolated atom at the cluster center. The pres-
ence of this inner atom increases the interdimer
distances while the dimer bond length in fact de-
creases. Charge density plots again substantiate the

picture of a dimer route of growth. This growth route
stops precisely at Cr12. The structure of Cr12 is
superficially similar to that of Cr11: just an additional
atom caps one of the lateral faces of Cr11. However,
the Cr-Cr distances in the dimers suddenly become
large and the dimerization effect vanishes, that is,
dimer-like bonds cannot be identified any more in
clusters with N > 11. Cr12 remains a small fragment
of a bcc solid (Cr11 with its inner atom also does, but
dimerization is still active in this cluster), and for
this reason the structures studied by Cheng and
Wang for N g 13 were bcc fragments obtained by
capping additional lateral faces of Cr11. In summary,
the structures are controlled by intradimer and
interdimer interactions. For the smaller clusters the
intradimer interaction dominates. The interdimer
interaction becomes stronger as the cluster size
increases, leading to the transition from dimer growth
to bcc-like structures.

The dimer growth route implies an odd-even effect
in the properties of CrN clusters. Indeed, an even-
odd alternation in the magnitude of the dissociation
energies has been observed for N < 10.114 Odd-even
effects have also been observed by Wang et al.115 in
the photoelectron spectrum of CrN

- clusters. The
measured PES are reproduced in Figure 3 for N )
3-11. These spectra are characterized for having
several discrete features: clusters with even N have
fewer features near the threshold and a distinct gap,
and clusters with odd N show more complex spectra
with congested features near the threshold, in par-
ticular for N ) 5, 7, 11. The even-odd alternation

Figure 3. Photoelectron spectra of CrN
-, N ) 2-11 at 3.49

eV photon energy. The structure of each cluster is in-
cluded.115 (Reprinted with permission from ref 115. Copy-
right 1997 American Institute of Physics).
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disappears above Cr12
- (see Figure 2 of Wang115): a

sharp threshold feature is observed in that size range
that evolves toward high binding energies and over-
laps with other higher binding energy features as the
cluster size increases. The odd-even alternation for
small N is clearly seen in the measured electron
affinity.115

The closed-shell electronic structure of Cr2 pro-
duces a large gap between the HOMO-σ4s and
LUMO-σ4s*, as seen in the spectrum of Cr2

- in
Figure 3: the two prominent peaks, labeled X and A
in this figure, correspond to the removal of one
electron from the σ4s* and σ4s levels, respectively. A
vibrationally resolved PES spectrum of Cr2

- has been
obtained for the X and A states.116 As indicated above
the electronic structure of Cr3 can be described as
(σ3d

2π3d
4δ3d

4σ4s
2)3d54s1, that is with the third atom in

its atomic configuration having all its six electrons
unpaired. The orbital degeneracy is lifted under the
C2v symmetry of Cr3, so the 3d orbitals of the odd
atom are split into five nondegenerate orbitals. The
4s orbital of the odd atom (weakly mixed with the
σ4s orbital of the dimer) becomes the HOMO of Cr3
and the extra electron in Cr3

- fills this level. The first
feature in the PES spectrum of Cr3

- at 1.4 eV (see
Figure 3) corresponds to the removal of an electron
from the atomic 4s orbital. The prominent peak at
2.9 eV arises from the removal of an electron from
the σ4s orbital of the dimer. This orbital has a larger
binding energy than the corresponding σ4s orbital in
Cr2 because of its interaction with the 4s orbital of
the odd atom. All the features between the 4s and
σ4s peaks are due to the 3d electrons of the odd atom.
For this reason, the PES spectrum of Cr3

- is more
congested than that of Cr2

-. It should be noticed that
all the features ascribed to the odd atom in Cr3 fall
inside the region of the HOMO-LUMO gap of Cr2.
The spectra of Cr4

- and Cr8
- show gaps of 0.48 and

0.41 eV, respectively, suggesting that the neutrals
have closed shells. The spectrum of Cr6

- is unusual,
with an intense threshold peak and a high electron
affinity. All these features are explained by the DFT
calculations, confirming that Cr4 and Cr8 are closed-
shell clusters. On the other hand, Cr6 has an open-
shell configuration and the extra electron in the anion
enters into the partially filled HOMO, in contrast to
Cr4

- and Cr8
-, where the extra electron goes to the

LUMO of the neutrals. This results in the high
electron affinity of Cr6 compared to Cr4 and Cr8.

The electronic structure of the odd clusters from
Cr5 to Cr9 can be described, as for Cr3, as arising from
the interaction between the levels of the even cluster
(N - 1) and the odd atom: the energy levels of the
odd atom are bunched near the HOMO and in the
region of the HOMO-LUMO gap of the even cluster.
The larger electron affinities of the odd clusters
compared to the even ones occur again because the
extra electron goes to the open-shell HOMO in the
odd clusters. Cr10 and Cr11 deviate slightly from the
dimer growth route since they have four dimers
instead of five. Still, their PES spectra resemble those
of the even and odd clusters, respectively. Finally,
the measured PES spectra of Cr12-Cr15 show that
the even-odd alternation effects vanish in agreement

with the theoretical prediction113 that the dimer
growth effect also terminates. All the PES of large
clusters have similarities, with a sharp feature near
threshold that smoothly merges with other higher
binding energy features as N increases. Beyond Cr24
a single broad band is observed near threshold (in
experiments at 3.49 and 4.66 eV photon energies).
In this size range the PES spectrum already re-
sembles the first bulk feature where a sharp peak
near the Fermi level is followed by a broad surface
feature.117,118 Further similarities appear at higher
binding energy for experiments performed at 6.42 eV
photon energy. To close, we stress that the odd-even
alternation effects observed for Cr clusters have a
different nature compared to those observed for
alkali- and noble-metal clusters and explained by the
ellipsoidal jellium model.

For many years the Cr2 molecule has represented
the benchmark test for a proper account of correlation
effects in ab initio calculations. The most recent ab
initio calculations reproduce the bond distance well,
although the binding energy is still difficult to
calculate accurately. The DFT calculation of Cheng
and Wang,113 which used the LDA for exchange and
correlation, obtained a bond length of 1.69 Å and a
binding energy of 2.28 eV, to be compared with
experimental values of 1.68 Å and 1.50 eV, respec-
tively. The overestimation of the binding energy
reflects the effect of the LDA. A multireference CI
calculation including almost 1.3 billion configura-
tions119 gives a bond length of 1.72 Å and a binding
energy of 1.09 eV. The same paper also gives an
extensive review of previous calculations for Cr2.
Most recently, an ab initio calculation by J. Persson
and P. R. Taylor, referred to in a review by Roos,120

gives very accurate values for both magnitudes, 1.695
Å and 1.628 eV respectively, so it seems that the
quest for a correct description of Cr2 is coming to an
end.

V. Thermionic Emission from Refractory Metal
Clusters

The photoelectron spectra of some 3d and 4d
cluster anions have been discussed above. The physi-
cal process underlying the PES spectra is the follow-
ing

that is, the absorption by a cluster anion MN
- of a

photon of energy pω larger than the electron affinity
of the neutral MN leads to the prompt emission of an
electron on a time range of or below femtoseconds,
leaving the neutral cluster in its ground state MN or
in an excited state MN*. The kinetic energy Ekin of
the electron is different if the final state of the neutral
cluster is MN or MN*. But this is not the only possible
process. The absorbed energy can be rapidly ther-
malized by the internal degrees of freedom of the
cluster anion, which then reaches a superheated state
(MN

-)E1 with internal energy E1, and subsequently

MN
- + pωf MN + e- (16)

f MN* + e- (17)
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the hot cluster anion can emit an electron, leaving
the neutral cluster in a state with lower internal
energy E2. This process is, schematically

It takes time to focus the energy back into the
electron emission channel, so the emission of the
electron by this process is delayed in time compared
to the direct photoemission. Another difference be-
tween the two processes is that direct photoemission
leads to a discrete spectrum while in delayed photo-
emission, which is related to the well-known ther-
mionic emission of electrons from hot metal sur-
faces,121theemittedelectronsexhibitaquasicontinuous
energy distribution. The spectrum of kinetic energies
is a smooth exponential function corresponding to a
“temperature” T ) (E1/kB)(3N - 6) where E1 is the
excitation energy (energy of the photon), kB is Boltz-
mann constant, and 3N - 6 is the number of
vibrational degrees of freedom.

Delayed ionization (lifetimes greater than 10-7 s)
was first observed in neutral clusters of refractory
metals (W, Nb, Ta).122-124 A detailed study has been
performed for WN

- to analyze the contributions from
prompt and delayed ionization.125 Starting from W2

-,
the PES spectrum shows sharp peaks at low binding
energies (between 1.5 and 2.5 eV) assigned to direct
photoemission and a smooth thermionic signal that
increases monotonically with increasing binding en-
ergy. The overlap region between the two components
of the spectrum goes from 2.5 to 3 eV. The two
components are also observed for larger clusters. The
sharp peaks arise from direct photoemission from
occupied 5d- and 6s-derived molecular orbitals of the
clusters. The smooth signal is fitted very well by a
Boltzmann distribution for the intensity

where the temperature corresponds to a photon
energy pω ) 4.025 eV used in the experiments.
Evidently, when the time constant of the thermionic
emission (TE) is much longer than the time scale of
the experiment (usually around 0.1 µs) only direct
photoemission would be observed. This is the reason
the integrated TE intensity decreases with increasing
N for WN

-: as the number of degrees of freedom
increases, the photon energy is distributed over a
larger number of vibrational modes and it takes
longer to focus the energy back into the electron
emission channel.

Before the observation of thermionic emission from
hot tungsten clusters, the standard cooling mecha-
nism detected for different types of superheated
clusters had been the evaporation of neutral frag-
ments (mostly monomers)

The faster of the two cooling mechanisms, delayed
ionization or fragmentation, is going to dominate, and
the time constants depend on the respective energy

thresholds: these are the electron affinity in the case
of TE and the binding energy of the atom for the
evaporative cooling. For the refractory metal clusters
the threshold for evaporation is larger than the
electron affinity (3-4 times larger in WN) and TE
dominates, as observed in the experiment. This can
already be predicted from the properties of the bulk
metals: a small ratio between the work function WF
and the cohesive energy per atom Ec and a small
value of WF in absolute terms are the conditions for
good thermionic emitters, and these conditions are
best satisfied by the refractory metals; in particular,
the ratio is 0.5 for tungsten. This is, in fact, the
reason the cluster experiments focused on these
elements. In contrast, when the magnitudes of the
electron affinity and the evaporation energy are
similar, the two cooling mechanisms are competitive.
This is the case for alkali cluster anions: Reiners and
Haberland126 have observed atom and electron emis-
sion from Na91

-. For neutral or positively charged
clusters of most metals, the cooling mechanism is
atom evaporation since in this case the ionization
potential (which substitutes the electron affinity) is
usually larger than the binding energy of an atom,
even for the simple sp metal clusters. By storing the
WN

- anions in a Penning trap, Weidele et al.127 have
observed delayed electron emission on the millisecond
time scale.

Delayed ionization attributed to a thermionic emis-
sion process is not specific of pure refractory metal
clusters and also has been observed for metal carbide
clusters,128 metal oxide NbnOm clusters,129,130 and
metallocarbohedrene clusters Ti8C12 and V8C12 by
Castleman and co-workers.131,132

VI. Nonmetal−Metal Transition
The theoretical characterization of what is a metal-

lic material is clear in the case of bulk systems, where
band theory concepts apply. This concept is more
subtle for small clusters. Very small clusters can be
considered nonmetallic, having a discrete distribution
of electronic states, and a critical size Nc is required
before this distribution turns into a quasicontinuous
one in the region around the Fermi level.133 The static
electric polarizability R of alkali clusters (or more
properly, the w f 0 limit of the dynamic polarizabil-
ity) rapidly drops from large values for the free atoms
toward much lower values characteristic of a con-
ducting metallic sphere, R ) R3, where R is the radius
of the sphere. The measured polarizabilities of lithium
clusters134 reveal that the electronic delocalization
already appears for sizes as small as Li4 or Li5. The
polarizabilities of transition-metal clusters have not
been measured. Scanning tunneling spectroscopy
experiments of deposited clusters measure their
conductance and are able to shed light on their
electrical character. These experiments have been
performed for some transition- and noble-metal
clusters135-137 and essentially probe the density of
states at the Fermi level εF. The tunneling conduc-
tance decreases markedly with a decrease of the
cluster size, when the cluster diameter is < 1 nm and
shows the emergence of an energy gap, suggesting
that small clusters are indeed nonmetallic. Kubo138

MN
- + pω f (MN

-)E1
f (MN)E2

+ e- (18)

I ) A exp(-Ekin/kBT) (19)

MN
- + pω f (MN

-)E1
f (MN-1

-)E2
+ M1 (20)
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has proposed that a cluster has metallic character
when the average level spacing becomes smaller than
the thermal energy kBT, or in terms of the density of
states (DOS) D(ε), when

The simple square d-band model introduced by
Friedel139 within a tight-binding framework can be
extended to clusters, and the DOS can be expressed
(the model neglects sp electrons)

Here the factor 10 is the total number of electrons
in a full d shell and εd is the atomic d level. The
bandwidth W(N) can be related to the average atomic
coordination Z(N) using a second moment approxi-
mation140

where Wb and Zb are the bandwidth and coordination
number in the bulk, respectively. Using the last two
equations, relation 21 can be written

This relation shows that for a given metal, the critical
size Nc is determined by the variation of the function
Z(N). Zhao et al.141 have used a simple approximation

that leads, from eq 24, to the approximate solution

where G(T) is defined G(T) ) (1/kBT‚Wb/10Zb)2. Tak-
ing Zb ) 12, the value for an fcc crystal, and using
bandwidths from Harrison,10 the following values are
obtained for a temperature T ) 120 K: Nc(Fe) ) 50,
Nc(Co) ) 39, Nc(Ni) ) 34, Nc(Pd) ) 50.

The approximation for Z(N) in eq 25 depends only
on N and takes no account of the cluster geometry.
For instance, for an fcc cluster with 55 atoms and a
cuboctahedral shape, the average coordination given
by eq 25 is 25% too high compared to the exact value
7.85. Furthermore, if the cluster grows by the forma-
tion of successive atomic shells, Z(N) should show a
nonmonotonic behavior. Aguilera-Granja et al.142

have evaluated Z(N) exactly for Co, Ni, and Pd
clusters with two structural types: (a) particles with
an underlying fcc lattice and cuboctahedral (CO)
shape and (b) icosahedral particles. In both cases the
critical sizes for T ) 110 K are Nc(Co) ) 31, Nc(Ni) )
27, Nc(Pd) ) 43, a little smaller than the values
obtained using eq 25. For Fe clusters with an
underlying bcc lattice and (a) spherical or (b) cube

shapes, the critical sizes for T ) 110 K are Nc(Fe) )
33 and Nc(Fe) ) 35, respectively, again smaller than
the value from eq 25. Tunneling experiments probing
the density of states at the Fermi level have been
performed for Fe clusters supported on a GaAs
substrate at room temperature.135 These experiments
indicate that the nonmetal-metal transition occurs
for Nc = 35. The values obtained by Aguilera-Granja
et al. are consistent with this value. For Pd clusters,
X-ray spectroscopy indicates that the nonmetal-
metal transition occurs for cluster radii in the range
7-10 Å,143 while the theoretical model predicts a size
range 5-8 Å (40-120 atoms) depending on the
temperature.

Nc can also be estimated from an analysis of the
ionization potential. For a metallic droplet electro-
static arguments predict that I varies as

as a function of cluster radius R; or in terms of N

where R is a material dependent constant. In prac-
tice, the ionization potential follows this relation
rather well except for small sizes and Nc can be
identified with that cluster size when the measure-
ments begin to deviate from expression 28. Using
ionization potentials measured by Parks et al.,144 one
obtains Nc(Fe) = 28, Nc(Ni) = 20, Nc(Co) = 17. The
estimated cluster temperatures in those measure-
ments are 225 ( 50 K, and for those temperatures
Aguilera-Granja et al. obtained from eq 24 Nc(Fe) =
18-21, Nc(Ni) = 14, Nc(Co) = 15. The comparison is
satisfactory considering the approximations in the
square band model and the errors made in determin-
ing Nc from measured ionization potentials.

The theoretical model can be improved if the
square d-band model is replaced by a full tight-
binding calculation without any assumptions about
the shape of the band. Aguilera-Granja et al.145 have
solved self-consistently a tight-binding Hamiltonian
for the 3d and 4sp electrons of Ni clusters in a mean-
field approximation. The full details of this Hamil-
tonian will be presented below when discussing
magnetic properties (section IX). Here we only give
the results of the application to the nonmetal-metal
transition of Ni clusters. The density of states D(ε)
was calculated for a number of Ni clusters. The
geometries of these were obtained by molecular
dynamics simulations using an interatomic many-
body potential146 for N e 14. For larger clusters, the
geometries correspond to a model of icosahedral
growth (see section VII) and were optimized with the
same potential. Using the Kubo criterion of eq 21,
the phase diagram of Figure 4 was constructed. The
triangles delineate a boundary that separates the
regions of nonmetallic and metallic character. The
boundary is smooth for N g 14. However, it becomes
steep and irregular for lower sizes. This suggests a
possible sensitivity to the cluster geometries used to
obtain the DOS. To investigate this point, the figure
also contains a number of open squares. These
represent results obtained using other geometries.
The conclusion is that the phase boundary is not very
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sensitive to the cluster geometries as long as these
are chosen in a reasonable way. The filled square
(with error bars) represents an experimental point
of the boundary, estimated from the measurement
of ionization potentials. This experimental point fits
well in the predicted boundary.

The rectangular d-band model leads to a phase
boundary, the continuous curve in the figure, that
reproduces rather accurately the results of the full
TB calculation. This is because the square d-band
model gives a remarkably good estimation of D(εF)
as compared to the full TB-DOS. Despite this rather
lucky agreement, the full TB calculation shows that
the shape of the DOS deviates strongly from a
rectangular shape for small Ni clusters.

VII. Icosahedral Model for Nickel Clusters of
Medium Size and Its Relation to Reactivity
Experiments

The determination of the geometrical arrangement
of the atoms in clusters of medium size, either from
theoretical calculations or from experimental meth-
ods, becomes a very difficult task. There is some
evidence that in a certain range of cluster sizes,
icosahedral arrangements compete successfully and
become favored over other arrangements based on
the underlying lattice of the bulk crystal. The rare-
gas clusters were the first to show icosahedral
symmetry.147 Not only perfect icosahedra with com-
plete shells were identified, but also a picture of
icosahedral growth was derived.148 For many metal
clusters, the mass spectrum for sizes higher than a
critical size (which is very dependent on the particu-
lar metal) has been interpreted as reflecting the
formation of geometrical (or atomic) shells. That
critical size is about 1500 atoms for Na.149 Thus,
between Nc = 1500-22 000 (the largest clusters
produced in the experiments), the structure of the
mass spectrum is consistent with the formation of
icosahedra or fcc-cuboctahedra. For alkaline-earth
metals, icosahedral clusters occur for smaller sizes:
Ba clusters with N between 13 and 55 atoms150,151

and Mg clusters with N larger than 147 atoms152

appear to have icosahedral structure. Information

about the development of the icosahedral shells was
extracted in the last case and a model of growth was
proposed. This growth path, although related to the
one accepted for rare-gas clusters, is not identical and
does not produce the same magic numbers (the way
of covering an icosahedral cluster to obtain a larger
icosahedron is not unique).

Pellarin et al.153 have analyzed the mass spectrum
of Ni and Co clusters containing between 100 and
800 atoms. The spectra were measured by performing
near-threshold photoionization and standard time-
of-flight mass spectrometry. Highly stable clusters
of size Nm have larger ionization potentials compared
to neighbor clusters of sizes Nm + 1, Nm + 2, .... When
the photon energy pω is lowered just below the
ionization potential I(Nm) of the cluster of size Nm,
only the clusters of sizes Nm + 1, Nm + 2, ... in the
molecular beam will be detected in the mass spec-
trum, but not the size Nm. This provides a very
efficient method of analyzing the variations in stabil-
ity of clusters as a function of size.154 For nickel
clusters, a sharp increase in the abundance was
observed at some particular cluster sizes. The stron-
gest effects occur after Nm ) 55, 147, 309, and 561.
These highly stable clusters could, in principle,
correspond to complete icosahedra or cuboctahedra.
Additional evidence for icosahedra instead of cuboc-
tahedra comes from the fact that above N ) 200,
enhanced stability was observed every time a face of
an icosahedron was covered in the process of building
the next icosahedron. Chemical probe experiments
by Riley and co-workers74.155-159 point to icosahedral
symmetry of Ni clusters in some size ranges (the
results will be discussed below). This conclusion is
derived from the measured saturation coverages and
adsorption free energies of H2O, NH3, and especially
N2 molecules.

The experimental inferences have prompted a
detailed study of a growth model based on the
formation of icosahedra with an increasing number
of shells,160 and this is the only model that has been
confronted in great detail with the reactivity experi-
ments. A perfect icosahedron is formed by 20 trian-
gular faces joined by 30 edges and 12 vertices. The
smallest perfect icosahedron can be labeled Ico13. The
icosahedral structure of Ni13 is supported by ab initio
DFT calculations.79 In this cluster, one atom occupies
the central position and the other 12 atoms occupy
the 12 vertices. Atoms can be added on top of this
icosahedral core in two ways. In the first type of
covering (labeled MIC) atoms are added on top of
edge (E) and vertex (V) positions. These provide a
total of 42 sites (30 + 12) to cover Ico13, and this way
Ico55 is obtained. Alternatively, instead of the E sites
one can cover sites at the center of each triangular
face (T sites), a total of 20. In this way the covering
of Ico13 by 32 atoms (12 + 20) leads to a cluster of 45
atoms. This second type of covering is often labeled
TIC. In a similar way, if we start with Ico55, its
covering can be performed in the MIC mode, produc-
ing Ico147: covering the 12 vertex sites, placing two
atoms on top of each edge (sites E1 and E2) to give a
total of 60 E atoms and one atom (on a T site) above
the center of each of the 20 faces. As before, a TIC

Figure 4. Calculated nonmetal-metal phase diagram of
Ni clusters. The continuous line corresponds to a simple
rectangular d-band model, while the squares and triangles
give the boundary obtained from fully self-consistent tight-
binding calculations. The filled square is an experimental
point obtained from measurements of the ionization po-
tential.
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covering can be effected instead: filling the 12 vertex
sites and covering each triangular face with three
atoms, a cluster with 127 atoms is obtained. Figure
5 shows the two types of covering for Ico13 and Ico55.
In ideal MIC covering there are two first-neighbor
distances of 1.0 and 1.05 (short bonds), in units of
the radius of Ico13, and a second-neighbor distances
of 1.45. The distance 1.0 corresponds to first neigh-
bors in different shells, and the distance 1.05 to first
neighbors in the same shell. For ideal TIC covering,
there are more bond lengths of value 1.0 than in MIC
but some of the bond lengths of magnitude 1.05 are
replaced by larger ones with values 1.13 and 1.21 (the
density of surface atoms of the TIC cluster is lower).
The TIC growth is favorable at the beginning of a
shell up to a point when the MIC growth becomes
preferred. This is understandable, because the atoms
added give rise to more short bonds in the TIC mode
at the initial steps of covering and in the MIC mode
beyond a certain size. The crossing point depends on
the details of the interatomic interactions so that
different systems have different crossing points.148,161

The competition between TIC and MIC geometries
has been studied160 by modeling the interatomic
interactions by the embedded-atom method
(EAM).162,163 The binding energy of the cluster is
given in this method as

Each contribution Fi(Fi
h) represents the embedding

energy of atom i in an effective uniform medium
whose density Fi

h is approximated by the superposi-
tion of the atomic density tails of the other atoms
around site i. On the other hand, φij(rij) is a residual
core-core repulsion between atoms i and j separated
by a distance rij that Foiles et al.162 parametrized in
the form

where Zo is the number of outer electrons of the atom

(10 for Ni), and R, â and ν are adjustable parameters.
The function Fi and the parameters in φij are obtained
empirically from the physical properties of the bulk
metal. The data basis used in the fit includes the
equation of state of the metal,164 the elastic constants,
the vacancy formation energy, and the heat of solu-
tion of alloys. The EAM correctly predicts that the
fcc structure is favored over the hcp and bcc struc-
tures for bulk nickel162 and has been applied to
clusters.165-167 The ideal TIC and MIC structures
were relaxed up to their respective nearest local
energy minima in the energy hypersurface under the
EAM forces. The first five atoms added to Ico13 prefer
T sites over faces sharing a vertex. The next atom
prefers that particular vertex site, and this cap of six
atoms forms a TIC umbrella (see Figure 5), giving a
double icosahedron structure to Ni19, with two inner
atoms and 17 surface atoms. This structure has also
been found in simulations using other many-atom
potentials166,168-170 and the effective medium theory.171

By adding four more atoms, the next TIC umbrella
is completed in Ni23, whose structure can be viewed
as three interpenetrating double icosahedra. Another
umbrella is completed in Ni26, which is composed of
five interpenetrated double-icosahedra. Completion
of TIC umbrellas leads to special stability for the
polyicosahedral clusters with N ) 19, 23, 26, 29, and
32, since the binding energy increases sharply be-
tween N - 1 and N. However, the strain accumulated
by completing more and more TIC umbrellas makes
the polyicosahedral structure eventually less stable
compared to MIC covering, and a transition from TIC
to MIC occurs after Ni26. The two structures are
degenerate for Ni27, and a complete reordering occurs
for Ni28: all the atoms on faces change to edge
positions and Ni28, which contains three complete
adjacent MIC umbrellas, becomes a fragment of Ico55.
Then, from N ) 28 to 55, the cluster follows MIC
covering. New umbrellas are completed for N ) 32,
36, 39, 43, 46, and 49, and the cluster again becomes
very stable when each new umbrella becomes filled.
This is appreciated in Figure 6 where the difference

Figure 5. MIC and TIC coverings of icosahedral clusters.
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Figure 6. Binding energy difference ∆Eb ) Eb(N - 1) -
Eb(N) and change ∆NB in the number of bonds between
NiN-1 and NiN versus the number of atoms N. The numbers
and black circles indicate filled umbrellas. ∆NB is not given
for the transition at N ) 28. (Reprinted with permission
from ref 160. Copyright 1996 AIP.)
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between the total binding energies of NiN-1 and NiN
has been plotted. ∆Eb gives the energy required to
remove one atom from NiN. Peaks in ∆Eb appear
when TIC umbrellas are completed for N < 28 and
when MIC umbrellas are completed for N g 28. The
figure also shows the increase ∆NB in the number of
bonds between NiN-1 and NiN. ∆NB shows a perfect
correlation with ∆Eb, both before N ) 28 (TIC regime)
and after N ) 28 (MIC regime).

Ni55 is a perfect icosahedron with two shells of
atoms. Clusters with N ) 58, 61, 64, 67, and 71 fill
one, two, three, four, and five faces, respectively, of
a TIC umbrella (see Figure 5), and this umbrella is
completed with 16 atoms in Ni71. Filling each of those
faces enhances the stability of the corresponding
clusters. One face of the next TIC umbrella is filled
for Ni74. MIC and TIC structures are very close in
energy for N ) 72-74, and the TIC-MIC transition
is predicted to occur at Ni74. MIC umbrellas then form
at N ) 71, 83, 92, 101, 110, 116, 125, 131, and 137,
and the icosahedron is completed for Ni147. Enhanced
stability is predicted by filling those umbrellas and
also for other few particular sizes, N ) 77, 86, 95,
104, and 119. The stability of the last ones can be
explained by analyzing in detail the increase in the
number of bonds as the cluster grows.160

It was stated at the beginning of this section that
mass spectra measured by Pellarin et al.153 have
shown the enhanced stability of Ni clusters for sizes
consistent with the formation of perfect icosahedra,
N ) 55, 147, 309, 561 and also above N ) 200, each
time a face of the icosahedron is covered, and
especially when a MIC umbrella is completed. In
support of this view, the theoretical results indicate
enhanced stability for filled umbrellas. The interpre-
tation of the chemical probe experiments of Parks
and co-workers74,155-159 is based on the following rules
for estimating the number of binding sites for nitro-
gen: (1) N2 binds directly to individual nickel atoms
in a standing-up configuration; (2) a Ni atom with a
coordination number of 4 or less binds two Ni2
molecules; (3) Ni atoms with a coordination number
5-8 bind one N2 molecule; (4) Ni atoms with a
coordination number of 9 bind N2 molecules weakly
or not at all; and (5) Ni atoms with a coordination
number 10 or more do not bind Ni2 molecules.157 The
adsorption results point to icosahedral symmetry for
N < 29 and N > 48. Those measurements indicate
that Ni13 and Ni55 are both perfect icosahedra and
that the growth is polyicosahedral (that is TIC
growth) up to N ) 26, whereas Ni28 is a fragment of
Ico55 with three MIC umbrellas. So, the coincidence
with the theoretical calculations is outstanding since
these predict the TIC-MIC transition to occur at
Ni27-Ni28. Parks et al.74,159 find the structural char-
acterization of Ni27 difficult. The saturation coverages
are inconsistent with polyicosahedral structure and
consistent with a MIC cluster with an atom removed.
However, the last structure would, in their opinion,
be in contradiction with the large drop in the H2O
adsorption free energy between Ni27 and Ni28, con-
sidering that in both clusters the lowest atomic

coordination would be five. The contradiction is
removed by the calculations. The enhanced binding
energy of Ni28 (see Figure 6) means that the cluster
will bind the adsorbed molecules weakly. So, the
structure of Ni27 consistent with the experiments may
well be, as for Ni28, a fragment of Ico55. The region
28 < N < 48 has not been studied in great detail,
although a preliminary analysis of N2 uptake shows
some evidence for fcc packing for some clusters in this
size region.74,159 However, we note a correlation
between a minimum in the experimental adsorption
free energy of H2O on Ni32 and the peak of ∆Eb
corresponding to the filling of four umbrellas. Ad-
ditional work is required in this region. The icosa-
hedral structure reappears clearly for Ni48.157

Ni38 and Ni39 are special cases where the adsorp-
tion of N2 has been analyzed in detail. The measured
saturation coverages of Ni38 with different molecules
(N2, H2, CO) have been interpreted as indicating that
the structure of this cluster is a truncated fcc
octahedron. It will be discussed in detail in section
IX that theoretical calculations based on many-body
potentials agree with this structure. The adsorption
of N2 on the surface of Ni39 has also been studied in
detail.172 Two saturation levels are evident in the
uptake data at very low temperatures, one at Ni39
(N2)27 and one at Ni39 (N2)32, and these have been
interpreted as representing the saturation of two
separate isomers. With a long time for relaxation of
the bare clusters before reaction, the second isomer
(isomer A) becomes favored over the first one (isomer
B), and for this reason isomer A was considered to
be the ground state of Ni39. According to the binding
rules for N2 adsorption,157 this cluster has 32 surface
atoms with coordination between 5 and 8. The first
conclusion is that the structure of Ni39 is not related
to that of Ni38, which is an fcc octahedron that binds
24 N2 molecules at saturation. A candidate with the
required property is the icosahedral fragment of Ico55
obtained by removing a 16-atom cap. The surface of
this cluster has 32 binding sites available for N2
adsorption: 22 of those atoms have coordination 6
and the remaining 10 atoms have coordination 8.
Another candidate is the most stable isomer calcu-
lated by Wetzel and De Pristo173 using the corrected
effective medium method: this is composed of two
16-atom “caps” joined together along their symmetry
axis, one staggered relative to the other, surrounding
a 7-atom pentagonal bipyramid. The caps are formed
by one apex atom surrounded by 5 atoms (like an
apex of an icosahedron) and 10 additional atoms
forming the belt of the cap. The Wetzel-De Pristo
ground state also binds 32 N2 molecules: 12 surface
atoms have coordination 6 and 20 surface atoms have
coordination 8. A small rotation of one cap with
respect to the axis of the internal pentagonal bipyra-
mid leads to the next most stable isomer of Wetzel
and De Pristo: this has 27 available sites for N2
adsorption, 12 of those atoms have coordination 6,
10 have coordination 7, and 5 have coordination 8.
Parks et al.172 have proposed the two lowest energy
isomers of Wetzel-De Pristo to be isomers A and B,
respectively, in the reactivity experiments. This
interpretation is further supported by the fact that

∆Eb ) Eb(N - 1) - Eb(N) (31)
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the experiments show conversion of isomer A to
isomer B with increasing nitrogen pressure in the
flow-tube reactor and retroconversion back to isomer
A for even higher pressure. This reveals that the
relative stability of isomers A and B changes with
the number of adsorbed N2 molecules, and these
changes of relative stability can be also explained by
looking at the number of atoms with coordination 6,
7, and 8 and noticing that the binding of N2 to atoms
of coordination 6 is the strongest, and then those
atoms will be the first ones to be covered, then atoms
of coordination 7 (favoring isomer B), and finally
atoms of coordination 8 (favoring conversion back to
isomer A). This dependence of isomer stability on the
degree of adsorption introduces a warning concerning
the interpretation of the cluster geometries inferred
from reactivity experiments. Pursuing this point one
can notice that the icosahedral structure of Ni39 has
22 surface atoms of coordination 6 that will bind N2
molecules strongly and can make this “covered”
cluster competitive with the structures of Wetzel and
De Pristo.

After completing the Ni55 icosahedron, the experi-
ments are consistent with TIC covering up to the
formation of a 16-atom umbrella for Ni71, although
the structures of Ni66 and Ni67 remain yet unidenti-
fied. The binding of water molecules174 shows minima
at N ) 58, 61, and 64 that are highly stable clusters
because of the filling of faces of a TIC umbrella. But
the growth model cannot explain the lack of a
minimum at N ) 67 and the existence of a minimum
for N ) 69. There are measurements of ammonia
uptake and of the binding of water molecules174 that
show size oscillations correlating with the formation
of MIC umbrellas for N > 71. For example, the
ammonia uptake is a minimum for N ) 83, 92, 101,
116, 125, and 131, all of them predicted by the model
to have completed umbrellas. Also, the water binding
is maximum for N ) 72, 93, and 102, which are
clusters with filled umbrellas plus a single atom, and
for N ) 87, 96, and 105. For all those clusters the
relative stability, measured by the function S(N) )
Eb(N - 1) + Eb(N + 1) - 2Eb(N), shows minima.160

There are maxima in the water binding at N ) 66
and 81 that the model does not explain.

The reactivity of NiN
+ clusters with CO has been

studied by another group.176 Analysis of the satura-
tion limits and comparison with predictions of the
polyhedral skeletal electron-pair theory177 indicate
that the growth can be explained by the icosahedral
model, forming a pentagonal bipyramid in the case
of Ni7

+, and by capping this structure to build up an
icosahedron at Ni13

+ and a double icosahedron at
Ni19

+.
Several other calculations have been performed for

Ni clusters. Molecular dynamics simulations with a
many-body potential based on the tight-binding
method have been performed by Rey et al.166 and
Garzón and Jellinek169 for small clusters. Stave and
De Pristo175,171 used the corrected effective medium
theory for NiN with N e 23. EAM calculations for
small,166,168,170,178 medium,179,180 and large165,167 clus-
ters give support for the icosahedral growth for
clusters with more than 13 atoms, at least for sizes

not far from shell closing. A semiempirical tight-
binding method has been applied by Lathiotakis181,182

to compare the relative stabilities of NiN clusters with
icosahedral and fcc-like structures for N ) 13, 55,
and a few sizes in between. The picture arising from
the tight-binding calculations is that the icosahedral
structures are preferred near the closed-shell sizes
N ) 13 and 55 and that a strong competition is
established for open-shell clusters in between, with
some predominance of the fcc structures. The excess
binding energies favoring the fcc structure for N )
19, 23, 24, and 38 are 0.08, 0.07, 0.05, and 0.017 eV/
atom, respectively. One should recall that the reac-
tivity experiments discussed above support, instead,
the double icosahedron for Ni19 and the triple icosa-
hedron for Ni23.

It is fair to conclude that uncertainties still exist
about the structure of Ni clusters for sizes in the
region midway between closed shells. Doye and
Wales183 have proposed that the reason for the
difficulties in analyzing the reactivity experiments
in this size range is that a number of those clusters
may have ground-state structures that do not belong
to any of the usual morphologies (icosahedral, deca-
hedral, close packed). They arrived at this conclusion
by a careful Monte Carlo minimization of the energy
for clusters modeled by the Finnis-Sinclair family of
many-atom potentials184,77 given in eqs 9 and 10. The
corrected effective medium theory173 and the embed-
ded-atom calculations of Vlachos180 lead to the same
conclusion. However, the exponents n and m in the
Finnis-Sinclair potential are usually fitted to solid
state data and the values chosen for Ni, namely n )
9, m ) 6, seem to underestimate the stability of
icosahedral structures. Besides, since the icosahedral
clusters Ni13 and Ni55 turn out to be very stable, a
metastable growth of icosahedral clusters in some
experiments may be conceivable.

VIII. Magnetism. Experiments and Simple Models

A. Introduction
Clusters in a molecular beam are free from any

interaction with a matrix. It is then possible to
determine their intrinsic magnetic properties in a
clean way by using an appropriate experimental
technique. The dependence of the magnetic properties
on the cluster size can be determined in a Stern-
Gerlach experiment in which the free magnetic
clusters interact with an applied inhomogeneous
magnetic field and are deflected from the original
beam trajectory. The deflection of a cluster travelling
with a velocity v transversely to the field gradient
direction (defined as the z direction) is given by185,186

where m is the cluster mass, ∂B/∂z is the magnetic
field gradient in the z direction, and K is a constant
which depends on the geometry of the apparatus.
This equation shows that the deflection is propor-
tional to the cluster magnetization M(B). The deflec-
tion experiments185-191,76 are normally analyzed as-

d ) K
M(B)

mv2
∂B
∂z

(32)
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suming that the free ferromagnetic clusters are
single-domain particles following the superparamag-
netic behavior,192 which is true under certain experi-
mental conditions,193 namely, when the thermal
relaxation time of the clusters is much lower than
the time required by the clusters to pass through the
poles of the Stern-Gerlach magnet. In this case the
N atomic moments of a particle with N atoms are
coupled by the exchange interaction giving rise to a
large total magnetic moment µN that is essentially
free of the cluster’s lattice. This orientational freedom
allows the magnetic moment to align with an exter-
nal magnetic field. For an ensemble of particles in
thermodynamic equilibrium in an external field B,
the magnetization (that is, the average projection of
the magnetic moment of the particles along the field
direction) reduces, in the low-field limit (µNB , kBT)
and for large particles, to

Equations 32 and 33 allow for an experimental
determination of µN. The average magnetic moment
µj ) µN/N of the monodomain particle is analogous to
the saturation magnetization of the bulk, but in zero
field a monodomain particle has a magnetic moment
different from zero.

The magnetism is sensitive to the symmetry, local
coordination, and interatomic distances in the cluster.
These three characteristics are interrelated. Take
first the free atoms as an extreme case. Fe, Co, and
Ni atoms have 8, 9, and 10 outer electrons, respec-
tively, to be distributed in the outer 3d and 4s shells.
Hund’s rules require the spin to be a maximum, and
this leads to electronic configurations 3dv5 3dV14s2 for
Fe, 3dv5 3dV24s2 for Co, and 3dv5 3dV34s2 for Ni. The
3dv and 3dV subshells are separated by the exchange
interaction. Hence, these atoms have nonzero spins,
and since the spin magnetic moment of an electron
is 1 µB, the atoms have substantial magnetic mo-
ments. When the atoms come together in a cluster
or in the solid metal, the overlap between the atomic
orbitals of neighbor atoms gives rise to energy bands.
The levels corresponding to 4s electrons produce a
very broad free-electron-like band of delocalized
orbitals, with a large width in the solid of W ) 20-
30 eV, while the d electrons still stay fairly well
localized on the atomic sites, and the width of the d
band is much smaller, typically W ) 5-10 eV in the
bulk. The crystal potential stabilizes the d and s
states by a different amount. This, plus spd hybrid-
ization, leads to a charge transfer from s to d states
and the number of s electrons for systems other than
the atom is close to 1. Assuming that the 3d orbitals
are atomic-like, Hund’s rule requires the majority 3dv
subband to be fully occupied with 5 electrons per
atom while the minority 3dV subband has 2, 3, and 4
electrons per atom in Fe, Co, and Ni, respectively.
The difference in the number of spin v and spin V 3d
electrons per atom nd(v) - nd(V) is 3, 2, and 1 for Fe,
Co, and Ni, respectively, and the magnetic moments
per atom are µj(Fe) ) 3µB, µj(Co) ) 2µB, µj(Ni) ) µB.
These values are quite close to the magnetic moments

per atom of very small clusters. The bulk values,
µj(Fe) ) 2.2µB, µj(Co) ) 1.7µB, µj(Ni) ) 0.64µB, are
smaller and their noninteger values originate from
the partial delocalization of the 3d electrons, which
also contributes to the mutual alignment of the
magnetic moments. This is known as itinerant ex-
change. By comparing the photoelectron spectra of
negatively charged NiN

- and PdN
- clusters to those

of CuN
-, Gantefor and Eberhardt194 have studied the

onset of delocalization of the d electrons. In small Cu
clusters, the orbitals of the closed (3d)10 shell are well
localized, the interaction between the d cores can be
neglected,195 and the bonding is caused by the 4s
electrons mainly. The photoelectron spectra of NiN

-

with N e 6 is closely similar to the corresponding
one of CuN

-. This was analyzed, and the conclusion
of Gantefor and Eberhardt is that the 3d orbitals of
very small NiN

- clusters (N < 7) are also almost
totally localized and that the interaction between the
3d9 cores is negligible. Ho et al.66 made the same
observation earlier for Cu2

- and Ni2
- from the

analysis of the similarity of their spectra. The spectra
of larger clusters (NiN

-, N g 7) reflects the onset of
delocalization of the 3d electrons. The data for small
PdN

- clusters has some similarities to NiN
-.

The variation of the average magnetic moment as
a function of the number of atoms in the cluster, from
the atom on one extreme to the bulk on the other, is
in general not smooth. The overall decay is due to
the increasing average number of nearest neighbors,
which enhances the itinerant character of the d
electrons. On the surface of the clusters, this number
is still low compared to the bulk, so only when the
number of surface atoms becomes small compared to
the total number of atoms in the cluster µjN converges
to µj(bulk). Also, small or medium size clusters
normally have structures that are not a simple
fragment of the crystal. These ingredients affect the
detailed broadening of the electronic levels to form
the d bands. So the exchange splitting between v and
V spin d subbands, the charge transfer from the s to
the d band, and the sd hybridization depend on N
and control the evolution of µj.

B. Size Dependence of the Magnetic Moments
Under conditions where the clusters follow super-

paramagnetic behavior, the magnetic moments of Fe,
Co, and Ni clusters with sizes ranging from about
25 to 700 atoms have been measured by Billas et
al.185,186,191 for low cluster temperatures (vibrational
temperature Tvib ) 78 K for Ni and Co and Tvib )
120 K for Fe clusters). The results are given in Figure
7. The largest magnetic moments occur for the
smallest clusters. Roughly speaking, the magnetic
moment per atom decreases for increasing cluster
size and converges to the bulk value for a few
hundred atoms, although this convergence is faster
for the Ni clusters. However, in the three cases, weak
oscillations are superimposed to the global decrease
of µj, and the maxima and minima of the oscillations
occur at different cluster sizes for the different
metals. Bloomfield and co-workers76 have recently
measured the magnetic moments of size-selected
nickel clusters between N ) 5 and 740 with high

M(B) )
µN

2B
3kBT

(33)
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precision. These results will be discussed in detail
in section IX.

Experiments have also been performed for clusters
of 4d and 5d metals, which are nonmagnetic in the
bulk.196 Rhodium is an intriguing case. The measure-
ments of Cox et al.196 give nonzero magnetic moments
for Rh clusters with less than 60 atoms, although
larger clusters are nonmagnetic. Clusters with about
10 atoms have magnetic moments =0.8 µB, and µj
decays fast between N ) 10 and 20 showing, however,
some oscillations that produce large moments for
Rh15, Rh16, and Rh19. The magnetic moment for Rh20
has already been reduced to a small value of µj ) 0.2
µB and µj(Rh60) ) 0.05 ( 0.1µB. The case of Rh was
the first one where magnetism is observed in clusters
of a nonmagnetic solid metal. This behavior is dif-
ferent from that observed in clusters of 3d elements
(FeN, CoN, NiN) where the variation of µj extends over
a much wider range of cluster sizes. In contrast to
Rh, ruthenium and palladium clusters with 12 to

more than 100 atoms are reported to be nonmag-
netic.196

The decay of µj with cluster size can be easily
explained from simple models.197 Neglecting the
contribution of the sp electrons and using Friedel’s
model of a rectangular d band,139 the local density of
electronic states (LDOS) with spin σ at site i is
expressed140

Here εd
σ is the energy of the center of the σ spin

subband and Wi is the local bandwidth (assumed
equal for v and V spins). The second moment ap-
proximation in tight-binding theory140 gives Wi pro-
portional to the square root of the effective local
coordination number Zi

where Wb and Zb are the bandwidth and the coordi-
nation number of the bulk solid, respectively. If the
d-band splitting ∆ ) |εd

v - εd
V| caused by the exchange

interaction is assumed independent of cluster size
and equal to the bulk value, the local magnetic
moment

becomes

where Zc is the limiting coordination below which the
magnetic moment of that atom adopts the value µdim
of the dimer (magnetic moments for dimers are larger
than for bulk solids). For instance, for Ni one can
choose Zc ) 5.198 The average magnetic moment µjN
) 1/N∑N

i)1 µi strongly depends on the ratio of the
number of surface atoms and bulklike atoms in the
cluster. The former ones have small Zi and large µi,
while the internal atoms have Zi ) Zb and µi ) µb.
For small clusters, almost all atoms are surface
atoms and µj is large. However, as N increases, the
fraction of surface atoms decreases and with it µj. A
very simple expression was also proposed by Jensen
and Bennemann,199 who wrote

where µs is the magnetic moment of surface atoms.
Strictly speaking, the formula is valid for large N but
it clearly displays the decrease of µj toward µb with
increasing N. However, the experiments indicate that
µj varies with N in an oscillatory way and its
explanation requires detailed consideration of both
the geometry and the electronic structure.

C. Magnetic Shell Models
Transition-metal clusters do not display the strik-

ing magic number effects associated to the closing of

Figure 7. Magnetic moments per atom as a function of
cluster size N for (a) NiN at T ) 78 K, (b) CoN at T ) 78 K,
(c) FeN at T ) 120 K. (Reprinted with permission from ref
186. Copyright 1997 Elsevier Science.)

Di
σ(ε) ) { 5

Wi
for -
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2
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2
0 otherwise

(34)

Wi ) Wb(Zi/Zb)
1/2 (35)

µi ) ∫-∞
εF [Di

v(ε) - Di
V(ε)]dε (36)

µi ) {(Zb

Zi
)1/2

µb if Zi g Zc

µdim otherwise
(37)

µjN ) µb + (µs - µb)N
-1/3 (38)
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electronic shells characteristic of sp metal clusters.3
For this reason it would be reasonable to expect the
oscillations of µj to be associated to the development
of atomic shells, and several magnetic shell models
of increasing degree of realism have been developed.
The first shell model was developed by Billas et
al.185,186,191 The clusters were assumed to be formed
by several atomic shells, and the magnetic moment
of an atom was taken as depending only on how far
the atom is located below the surface of the cluster,
such that values µ1, µ2, µ3, ... are assigned to atoms
in layers 1, 2, 3, ...; here layer 1 indicates the most
external (surface) layer. These values µi were taken
independent of the cluster size. Then the observed
trend of a decrease of µj with N is reproduced by
assigning the following empirical values for µ1, µ2,
µ3, µ4, ...: (1.2, -0.4, 0.6, 0.8, 0.67, 0.65, 0.62, 0.6) for
Ni, (2.7, 0.4, 1.6, 1.45, 1.9, 1.9, 1.9, 1.7) for Co, and
(3, 3.2, 0, 0, 3.2, 3, 2.8, 2.5) for Fe, in units of µB.
These numbers show that the moments of the atoms
in the surface layer are enhanced with respect to
those of inner layers. However, the model is over-
simplified and although it reproduces the decay of µj,
it does not reproduce the intriguing oscillations
superimposed to its global decrease.

Jensen and Bennemann199 presented another shell
model in which the clusters are assumed to grow
shell-by-shell, occupying sites of an underlying body-
centered-cubic (bcc) or a face-centered-cubic (fcc)
lattice, and having global regular shapes (which
minimize the surface energy): cube, octahedron, and
cuboctahedron. In addition to those global cluster
shapes, another model of growth was considered
assuming the successive occupation of coordination
shells around the cluster center. Each coordination
shell is formed by those atoms at a common distance
from the cluster center, and this yields clusters with
spherical shape. To assign magnetic moments to the
different atoms in the cluster, the general rule holds
that the moments are different for different atomic
shells and even more these may vary within the most
external shells. The average coordination number Z
is largest for almost filled atomic shells. Then maxima
of Z should correspond to minima of µj, and oscilla-
tions of µj(N) as a function of N are expected as a
consequence of the formation of successive atomic
shells. This oscillatory behavior modulates the mono-
tonic decay of µj given by eq 38. Using these growth
models, Jensen and Bennemann calculated the num-
ber of atoms N corresponding to clusters with closed
atomic shells. These numbers are given in Table 2
for fcc clusters with cube, octahedron, and cubocta-
hedron shapes and for bcc clusters with cube and
octahedron shapes. For cubes and octahedrons, the
table also includes results for clusters with rounded
edges, obtained by removing all edge atoms from the
closed-shell clusters, yielding intermediate values of
N. The numbers obtained are compared in the table
with the measured sizes185,186,191 for which minima
of µj are obtained for Fe, Co, and Ni clusters in the
size range 30 < N < 700. The comparison is sugges-
tive: the experimental minima µjmin seem to roughly
correspond to the growth of bcc cubes for Fe clusters,
fcc cubes for Ni clusters, and fcc octahedrons for Co

clusters. Although the correlation is not quantitative
enough to allow for a definite conclusion about the
cluster structure, it provides some support for the
idea that the oscillations of µj(N) are related to the
formation of atomic shells.

To make the comparison more quantitative, pro-
posals were made by the same authors for the local
moments by taking into account the atomic environ-
ment. A statistical model was first proposed in which
the average magnetic moment per atom of the
outermost shell (1) is assumed to be

where X1 is the concentration of statistically occupied
sites in this shell. µat is the magnetic moment of an
atom without nearest neighbors in the topmost shell,
and µs is that for a surface atom surrounded by other
atoms in the topmost shell, taken to be similar to µ
for a surface atom in the bulk material. Next, the
average magnetic moment of shell 2 below shell 1 was
taken to depend on the concentration X1 of occupied
sites on shell 1

This means that the magnetic moment of an atom
in shell 2 is equal to µs if it has no nearest neighbors
in shell 1 and is equal to the bulk value µb if it is
covered by atoms of shell 1. For shells 3, etc.,
magnetic moments are taken equal to µb. From the
last two equations

where N1 and N2 are the number of sites in shells 1
and 2, respectively, Nb is the total number of atoms
in the inner shells, and N ) X1N1 + N2 + Nb. The
average magnetic moment obtained from eq 41 yields
oscillations with minima near closed shells (X1 ) 1)
and maxima for half-filled shells. The results are
given by the solid curves of Figure 8, with the
following parameters: for Fe, µat ) 4.0 µB, µs ) 3.0

Table 2. Cluster Size N for Various Cluster Structures
with Closed Atomic Shells.199 The Structures Are
Face-Centered-Cubic and Body-Centered-Cubic, and
the Cluster Shape Is That of a Cube, Octahedron
(oct), or Cuboctahedron (c-o)a

closed-shell cluster size N (µjmin)shell
n fcc cube fcc oct fcc c-o bcc cube bcc oct Fe Co Ni

2* 43 43 - 15 27 50
2 63 85 55 35 57 45 85 72

129
3* 140 165 59 89 173 131
3 172 231 147 91 143 85 232 175
4* 321 399 145 203 (150) 355 (260)
4 365 489 309 189 289 191 483 381
5* 610 777 - 285 385 273 625
5 666 891 561 341 511
6* 1031 1331 491 651
6 1099 1469 923 559 825 551

a Asterisks refer to rounded clusters with edge atoms
removed. Calculated N are compared with experimental sizes
for which the average magnetic moment is found to yield
minima.

µj1 ) (1 - X1)µat + X1µs (39)

µj2 ) (1 - X1)µs + X1µb (40)

µjN )
X1N1µj1 + N2µj2 + Nbµjb

X1N1 + N2 + Nb
(41)
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µB, µb ) 2.21 µB; for Co, µat ) 3.0 µB, µs ) 1.9 µB, µb )
1.72 µB; for Ni, µat ) 1.2 µB, µs ) 0.7 µB, µb ) 0.62 µB.
Consistent with Table 2, bcc cubes are assumed for
Fe, fcc octahedrons for Co, and fcc cubes for Ni.

Another model199 for µi assumes that the magnetic
moment at site i is determined by its actual number
of nearest neighbors, that is

The smooth dependence on Zi can be obtained from
the magnetic moments for surfaces and thin films.200

For a bcc lattice, the local atomic properties are

affected by the second neighbors, so µi in particular
has to depended also on Zi

(2). These can be taken into
account by defining an effective coordination number
Zi ) Zi

(1) + âZi
(2), where the coefficient â describes

the effective contribution from second neighbors. A
reasonable value for fcc clusters is â ) 0.25.197 The
results for the models of eqs 41 and 42 with param-
eters µ ) µ(Z) given in ref 199 are compared to
experiment in Figure 8. The statistical model of eq
41 yields the minima, and the more realistic model
of eq 42 improves the magnitude of µj. The agreement
with experiment is encouraging in view of the simple
theoretical models used, but clear evidence for a
distinct cluster structure cannot be claimed. Using
similar models, Zhao et al.197 proposed for the case
of Fe clusters the existence of prolate and oblate
deformations from the more spherical structures, and
Aguilera-Granja et al.201 have studied this possibility
for Fe clusters cut out from a simple cubic lattice with
cuboid shapes (n1, n2, n3): these indicate the linear
dimensions of the cubic cluster along the three
perpendicular axes. For simplicity they assumed n1
) n2, and then an asymmetry parameter can be
defined as f ) n3/n1, and f < 1 (f > 1) correspond to
oblate (prolate) shapes. From a simple Friedel’s
model they obtain

where µs is the moment of the surface atoms. By
performing an expansion of the term in brackets
around the symmetric case

This indicates that for a given N, µjN(oblate) > µjN-
(prolate) > µjN(symmetric). One also notices that for
slightly asymmetric clusters the correction is second
order, and in their opinion this result suggests that
asymmetry may not be responsible for the behavior
of the magnetic moment of Fe clusters since a large
asymmetry is necessary to get a significant change
in µjN. Although this analysis holds for simple cubic
clusters, the results are qualitatively similar for cubic
bcc clusters.

Jensen and Bennemann199 have also studied small
Rh clusters N e 40 because these clusters order
ferromagnetically,196 although the bulk is nonmag-
netic. They found that growth of an fcc cuboctahedron
by caps yields better agreement with experiment
than a symmetrical occupation of sites in the topmost
shell. The growth by caps is expected to give larger
cohesive energies because it enhances the number of
nearest-neighbor contacts in the topmost shell.

D. Temperature Dependence of the Magnetic
Moments

In the ferromagnetic ground state, the spins are
mutually aligned. Rising T introduces disorder so
that the net magnetic moment decreases. For the
bulk it vanishes at the Curie temperature Tc. The
behavior of µj with temperature can give information

Figure 8. Calculated average magnetic moments of Fe (a),
Co (b), and Ni (c) clusters as a function of N; bbc cubes are
assumed for Fe, fcc cubes for Ni, and fcc octahedra for Co.
The solid curves are calculated from the model of eq 41.
Dashed curves are from the model of eq 42, and the dots
represent the experimental results. (Adapted and reprinted
with permission from ref 199. Copyright 1995 Springer.)

µi ) µi(Zi) (42)

µjN

µjb
- 1 ) 6(µs

µb
- 1)[2f 1/3

3
+ 1

3f 2/3] 1
N1/3

(43)

[2f 1/3

3
+ 1

3f 2/3] = 1 + 1
9

(f - 1)2 - 10
81

(f - 1)3 (44)

660 Chemical Reviews, 2000, Vol. 100, No. 2 Alonso



about the strength of the ferromagnetic order and
about the stability of the magnetic ordering against
thermal excitation. Billas et al.185,186,191 have studied
the variations of µj for Ni, Co, and Fe clusters. Ni and
Co clusters behave in a expected way: for a given
size, µj decreases with increasing T except for an
initial plateau in Ni clusters or an initial rise of a
magnitude no larger than ∼5% in Co clusters. As the
cluster size increases, the curve µj(T) approaches the
saturation magnetization curve of the bulk metal.
However, this convergence has to be qualified. Phase
transitions are sharp only for very large systems, and
in a finite system, the transition becomes smeared
out in temperature. The µj(T) curve for Ni clusters of
sizes N ) 500-600 already closely follows the bulk
curve at low T, but at higher T the behavior of µj(T)
is less sharp and µj appears to approach zero much
more slowly due to the finite size effects. This
smearing out (which, of course, also occurs for smaller
clusters) agrees with predictions using a finite Heisen-
berg model.202 At temperatures around the bulk
Curie temperature, the measured magnetic moment
of the cluster is still substantial, suggesting that
magnetic ordering is still present at these elevated
temperatures. In fact, neutron scattering experi-
ments for bulk ferromagnets indicate that ferromag-
netic correlations persist at temperatures higher than
Tc, leading to a short-range magnetic order with a
correlation radius on the order of 10 Å,203,204 which
is a size similar to that of the free clusters in the
experiments of Billas et al.

The behavior of µj(T) for Fe clusters is clearly
different. First, the temperatures where the magnetic
phase transition occurs lie below Tc (bulk), although
again µj does not go to zero, and more important, the
thermal behavior of µj differs a lot for different cluster
sizes and there is no obvious convergence toward bulk
behavior. Billas et al. have suggested this to be a
consequence of a structural transition interfering
with the purely magnetic transition, as in bulk Fe.
Pastor et al.205 have analyzed the effect that short-
range magnetic order (SRMO) within the cluster has
on the average magnetic moment at high tempera-
ture. They first notice that in the experiments of
Billas, µjN(T) decreases with increasing T, reaching
a finite, approximately constant value above a tem-
perature Tc(N). This is expected for a magnetically
disordered state.202 The magnetization was, however,
significantly larger than the value corresponding to
N randomly oriented atomic magnetic moments,
which is µjN(T ) 0)/xN. If one assumes some SRMO
in the cluster and that this is characterized by the
average number of atoms ν in a SRMO domain, then
the magnetization per atom of an N-atom cluster at
T > Tc(N) is approximately given by

which represents the average x<µ2> of N/ν ran-
domly oriented SRMO domains, each carrying a
magnetic moment νµjN(T ) 0). The disordered local
moment picture, that is without SRMO, corresponds
to ν ) 1. The actual value of ν for 3d transition-metal

clusters can be estimated from known surface and
bulk results.205 ν ) 15 (which includes up to next-
nearest neighbors in a bcc lattice) seems a reasonable
estimate for Fe clusters, whereas for Ni the SRMO
is expected to be stronger and values ν ) 19-43 are
reasonable. With formula 45 and the values of ν given
above, Pastor et al. obtained good agreement with
experiment, providing clear evidence for the existence
of SRMO in these clusters above Tc(N).

Heat capacities of the clusters in the beam have
been measured by Hirt et al.206 For the Ni clusters
the heat capacity Cv attains a maximum at 350 K
and then decreases to the classical value. This feature
is associated with the decrease in magnetic moment
and indicates that the effect is due to the phase
transition from the ferromagnetic to the paramag-
netic state of the clusters. The heat associated with
the transition is 0.022 eV/atom, which is comparable
to the bulk counterpart, 0.018 eV/atom. The shape
of the peak corresponds to what may be expected for
a magnetic transition in a mean-field model.207 In the
same way, the mean-field approximation accounts
well for the peak of Cv observed in Co clusters. The
results for Fe are again more difficult to interpret.
Both for low and high T, the heat capacity falls below
the bulk value. And, although the position of the peak
coincides with a strong decrease of µj, the shape of
the mean-field peak does not reproduce the experi-
ment.

IX. Accurate Measurements for the Magnetic
Moments of Nickel Clusters and Their
Interpretation

The precise experiments of Apsel et al.76 correspond
to size-selected clusters. A number of tight-binding
(TB) calculations have been performed for Ni clusters
with sizes lower than 100 atoms, and comparison
between theory and experiment can help to elucidate
the atomic and electronic structure of those clusters.
The experimental moments show an overall decrease
with increasing cluster size, but oscillations are
superimposed on this behavior. µj shows a pronounced
minimum for Ni13, and another minimum occurs at
Ni56, which is so close to Ni55 that one would guess
that the clusters grow following an icosahedral pat-
tern as stressed in section VII. A third important
minimum occurs around Ni34. Between Ni13 and Ni34,
as well as between Ni34 and Ni56, the magnetic
moment goes through broad maxima also displaying
fine oscillations. Finally, in the small size limit, N <
10, where µj decreases most rapidly, there is a local
minimum at Ni6 and a local maximum at Ni8. The
experimental results for N e 60 are reproduced in
Figure 9.

A. Tight-Binding Calculations
Most studies attempting to understand these ex-

perimental results have used the TB method. For this
reason we present the main features of this theoreti-
cal formalism here. A full account of the TB method
and of its use for the modeling of materials has been
presented by Goringe et al.208 For a given geometrical
arrangement of the atoms in the cluster (or in

µjN(T > Tc) = µjN(T ) 0)x ν
N

(45)
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transition-metal slabs), the spin-polarized electronic
structure can be determined by self-consistently
solving a TB Hamiltonian for the 3d, 4s, and 4p
valence electrons in a mean-field approximation.209-211

In the unrestricted Hartree-Fock approximation,
this Hamiltonian has the expression (using second
quantization notation)

where ciRσ
+ is the operator for the creation of an

electron with spin σ and orbital state R (R ) s, px, py,
pz, dxy, dyz, dxz, dx2-y2, d3z2-r2) at the atomic site i, cjRσ
is the annihilation operator, and n̂iRσ ) ciRσ

+ciRσ is the
number operator. Concerning the nondiagonal ele-
ments of H, the Slater-Koster interatomic hopping
integrals tij

Râ between orbitals R and â at neighboring
atomic sites i and j are assumed to be spin indepen-
dent and are usually fitted to reproduce the first-
principles band structure of the bulk metal at the
observed lattice constant. The variation of the hop-
ping integrals with the interatomic distance rij is
often assumed to follow a power law (ro/rij)l+l′+1, where
ro is the bulk equilibrium distance and l, l′ are the
orbital angular momenta of the two orbitals involved
in the hopping.212 An exponential decay is sometimes
used instead of the power law.

The spin-dependent diagonal terms contain all the
many-body contributions and can be written in a
mean-field approximation as

Here, εiR
0 are the bare orbital energies of the para-

magnetic bulk metal. The second term gives the
shifts of the energies due to screened intra-atomic
Coulomb interactions. ∆νiâσ ) νiâσ - νiâσ

0, where νiâσ
) <n̂iâσ> is the average electronic occupation of the
spin-orbital iâσ, and νiâσ

0 the corresponding occupa-
tion in the paramagnetic solution of the bulk. The
intra-atomic Coulomb integrals URâ

σσ′ can be equiva-
lently expressed in terms of two more convenient
quantities, the exchange and direct integrals, JRâ )
URâ

vV - URâ
vv and URâ ) (URâ

vV + URâ
vv)/2, respectively,

and then the intra-atomic term of eq 47 becomes split
in two contributions

where ∆νiâ ) ∆νiâv + ∆νiâV, µiâ ) ∆νiâv - ∆νiâV, and zσ
is the sign function (zv ) -1, zV ) 1). The first
contribution in eq 48 arises from the change in
electronic occupation of orbital iâ and the second from
the change of the magnetization (spin polarization).
URâ and JRâ are usually parametrized. The difference
between s and p direct Coulomb integrals is often
neglected by writing Uss ) Usp ) Upp, and it is also
assumed that Usd ) Upd. The ratio between the
magnitudes of Uss:Usd:Udd can be taken from atomic
Hartree-Fock calculations and the absolute value of
one of them, Udd for instance, estimated by some
means.213,214 Typical values for these ratios are 0.32:
0.42:1 for Fe and Udd ) 5.40 eV.209 All the exchange
integrals involving s and p electrons are also usually
neglected, and Jdd is determined in order to reproduce
the bulk magnetic moment. Typical values for Ni, Co,
and Fe are not far from Jdd ) 1 eV.

The third term in eq 47 represents the Coulomb
shifts resulting from interatomic charge transfer. ∆νj
) νj - νj

0, where νj ) ∑âσ<n̂jâσ> ) ∑â<n̂jâv> + <n̂jâV>
is the total electronic charge at atom j and νj

0 the
corresponding reference bulk value. In eq 47 the
interatomic Coulomb interaction integrals Vij have
been approximated by Vij ) e2/rij although other
approximations have been used.210,211,215 Finally, the
last term in eq 47 takes into account the energy-level
corrections due to nonorthogonality effects10 and the
crystal-field potential of the neighboring atoms,140

which are approximately proportional to the local
coordination number Zi. The orbital-dependent con-
stants ΩR can be obtained from the difference be-
tween the bare energy levels (i.e., excluding Coulomb
shifts) of the isolated atom and the bulk. Through
this term one can also model effects on the energy
levels due to bond length changes associated with the
reduction of coordination number.10,140 The spin-
dependent local electronic occupations and the local
magnetic moments µi ) ∑R(<n̂iRv> - <n̂iRV>) are self-
consistently determined from the local densities of
states FiRσ(ε)

which can be calculated at each iteration by using
the recursion method.216 The energy of the highest
occupied state (Fermi energy) εF is determined from
the condition of global charge neutrality. In this way,
the local magnetic moments µi ) ∑RµiR and the
average magnetic moment µj ) 1/N∑iµi, are obtained
at the end of the self-consistent cycle.

The theoretical framework just presented is gen-
eral, although some of the calculations performed by
different authors incorporate slight differences with
respect to the basic method. For instance, the varia-
tion of the hopping integrals with interatomic dis-
tance is sometimes assumed to decay in an exponen-
tial way. In many works only the d electrons are
considered explicitly.213,217 However, although the

Figure 9. Calculated averaged magnetic moment of nickel
clusters218,219 (empty circles) compared with the experi-
mental results of Apsel et al76 (filled circles).
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spin polarization in the cluster is expected to be
dominated by the d electrons, the sp electrons should
have influence on the magnetic properties as a result
of spd hybridization, spd charge transfer, and the
resulting contributions to the many-body potential,
i.e., to the level shifts due to Coulomb interactions.
Guevara et al.215 have pointed out the importance of
electron spillover through the cluster surface, and
they took this effect into account by adding extra
orbitals with s symmetry (s′ orbitals) outside the
surface, as it had been done earlier by the same
authors for the surface of transition metals.211

In Figure 9 we give the results of TB calculations
for the average magnetic moments of Nin clusters up
to Ni60.218,219 Those results are compared with the
experimental values of Apsel el al.76 Two key ideas
will be used to interpret the results. The first one is
that the local magnetic moments decrease with
increasing local coordination around an atom. This
idea, which becomes confirmed by the calculations,142

has also been used to understand the magnetic
moments at planar surfaces and surfaces with de-
fects.220 The second idea is that the average magnetic
moment decreases when the interatomic distances
decrease (the d band becomes wider). In metallic
clusters, the average coordination generally increases
with increasing size N and also the average nearest-
neighbor distances d increase with N, from the value
for the molecule (dmol) to the value for the bulk (dbulk),
that is dbulk > dmol. This means that in a growing
cluster the two effects oppose each other and the
resulting behavior of µj(N) can be very rich. For N e
20, the geometrical structures used to perform the
electronic structure calculations have been obtained
from classical molecular dynamics (MD) simulations
using a semiempirical many-atom potential146,221

based on TB theory, with parameters fitted to prop-
erties of Ni2 and bulk Ni.222 This potential energy has
the form

Here lij ) rij/r0 is the distance between atoms i and j
divided by the equilibrium nearest-neighbor distance
in the bulk metal and ê, A, p, q, and ro are adjustable
parameters. The first term gives a pairwise repulsion
energy of the Born-Mayer type. The second is a
many-body attractive contribution giving the band
energy calculated in the second moment approxima-
tion to the TB model. The potential of eq 50 is often
called the Gupta potential.146

In the small cluster size range, the qualitative
agreement between calculated magnetic moments
and experiment is very good. The theory predicts
pronounced local minima at N ) 6 and 13 and a local
maximum at N ) 8. The atomic structures for N )
5-16 are plotted in Figure 10. Ni13 is an icosahedron
with an atom inside. The coordination of the surface
atoms is Z ) 6. Either by removing or adding an
atom, the resulting clusters, Ni12 and Ni14, respec-
tively, contain some atoms with coordination smaller
than 6 (the average coordination is given for all the
clusters in Figure 11(a)). This leads to an increase
of the local magnetic moment of those atoms. Con-
sequently, the minimum of µj at Ni13 is explained by
its compact structure. Ni6 is an octahedron with four-
coordinated atoms. In Ni7, which has the structure
of a pentagonal bipyramid, the coordination of two
atoms increases to Z ) 6, remaining equal to Z ) 4
for the rest. Ni8 has four atoms with coordination Z

Figure 10. Ground-state geometries of NiN (N ) 5-16) obtained with the Gupta potential. (Reprinted with permission
from ref 218. Copyright 1997 AIP.)
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) 5 and four atoms with coordination Z ) 4, which
leads to a mean coordination slightly lower than in
Ni7, and then the coordination increases again for
Ni9. This would lead us to expect a maximum of µj
for Ni8, which is indeed observed in the experiment,
and a minimum for Ni7. Instead, the observed and
calculated minimum occurs at Ni6, and the reason is
that the average first-neighbor distance d (plotted in
Figure 11b) has a local maximum at Ni7, that is,
d(Ni7) is larger than d(Ni6) and d(Ni8). The larger
value of d works against the increase of the coordina-
tion number from Ni6 to Ni7 and produces the
minimum of µj at Ni6. In summary, the full details of
the oscillations of µj for small N can be explained by
purely geometrical arguments: compact clusters
have small µj and clusters with large interatomic
distances have large µj.

In Figure 12 the orbital-projected densities of states
of Ni5, Ni6, and Ni7 are compared. The occupied states
of the majority-spin subband have mainly d character
with the exception of the peak at the Fermi energy,
which has sp character. d holes are present in the
minority-spin subband, with a large d contribution
at the Fermi level. Integration of the density of states
gives d magnetic moments of 1.6, 1.52, and 1.50 µB
for Ni5, Ni6, and Ni7, respectively, which does not
explain the behavior of Figure 9, so the sp electrons
make an important contribution. The three clusters
show some sp splitting: at the Fermi level for Ni5
and Ni7 and below εF for Ni6. The sp moments for
Ni5 (0.29 µB) and Ni7 (0.21 µB) reinforce the d moment,

while for Ni6 the sp moment (-0.15 µB) points in the
opposite direction. The sp contribution to µ appears
to decay quickly with cluster size, and for sizes N )
12-14 this contribution is already very small.218,219

A conclusion of the molecular dynamics study
leading to the geometries plotted in Figure 10 is a
pattern of icosahedral growth. This is present as
early as Ni7, since its pentagonal bipyramid structure
already displays the 5-fold symmetry (supported also
by ab initio calculations79). The icosahedral growth
for Ni clusters is consistent with a large body of
experimental information of reactivity with light
molecules already discussed in section VII. Since
icosahedral growth appears to be consistent with the
reactivity experiments, Aguilera-Granja et al.219 as-
sumed icosahedral clusters also for N > 20. The
structures obtained previously with the EAM160 were
reoptimized, this time using the Gupta potential of
eq 50 to have consistency with the case of N e 20.
The topology of the clusters remains the same as in
the EAM calculation, although the interatomic dis-
tances become shorter. In addition, extensive MD
simulations were done for a few selected sizes, and
an investigation of isomers was performed. In all
cases the icosahedral structures were recovered as
the ground state (Ni38 is an exceptional case to be
discussed later).

Returning to Figure 9, the TB calculations reveal
a broad trend that can be roughly characterized as
an initial decrease of µj for sizes up to N ≈ 28, followed
by a weak increase between N ≈ 28 and 60. This

Figure 11. Calculated average coordination number (a)
and average nearest-neighbor distances (b) as a function
of cluster size. The line in a is an extrapolation from small
sizes to sizes larger than N ) 27. (Reprinted with permis-
sion from ref 219. Copyright 1998 AIP.)

Figure 12. Density of electronic states, decomposed in sp
(dashed line) and d (thick line) contributions. Positive and
negative values refer to up and down spins, respectively.
The Fermi level is at ε ) 0. (Adapted with permission from
ref 218.)
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behavior is mainly related to the variation of the
average coordination number Zh , which is plotted in
Figure 11. Zh grows smoothly with N up to N ) 27,
and this explains the overall decrease of µj(N) in this
region. The change of Zh is faster for small N, which
correlates with the fast decrease of µj(N). A continu-
ous line has also been drawn in Figure 11a that
extrapolates Zh to sizes larger than N ) 27. The actual
calculated values of Zh between N ) 27 and 54 fall
below that extrapolated curve, and the same argu-
ment now explains the behavior of µj in that size
region: the break in Zh at N ) 27 gives a reduced
average coordination number that interferes with the
tendency of µj(N) to decrease, suggesting a flattening
of µj or even a weak increase, as confirmed by the
calculations. The break in the behavior of Zh is due
to the TIC-MIC transition occurring precisely at N
) 28 (see section VII).

The calculated minimum at N ) 55 (as before for
Ni13) has a clear correspondence with a minimum in
the measured moment. Also the minimum in the
region Ni27-Ni37, associated to the TIC-MIC transi-
tion, seems to have a correspondence with the broad
experimental minimum of µj in that region. The
experiments also show a weak minimum at Ni19 that
can tentatively be associated to the double icosahe-
dron structure of this cluster. Surprisingly, this local
minimum does not show up in the TB calculations
despite the change in slope of Zh (N) at Ni19 (see Figure
11a). The reason seems to be the slight jump up in
average nearest-neighbor distance, visible in Figure
11b. Another weak feature, a visible drop of µj
between Ni22 and Ni23 has a counterpart in the
calculation, a clear minimum this time (the last
cluster in a triple icosahedron). We then may con-
clude with some confidence that the minima dis-
played by the measured moments give additional
support to a pattern of icosahedral growth, which is
also consistent with reactivity experiments.

It was stated earlier that Ni38 is an exceptional
case. The results of a recent experiment223 measuring
the saturation coverage of Ni38 with different mol-
ecules (N2, H2, CO) indicate that the structure of this
cluster is a truncated octahedron cut from an fcc
lattice. Motivated by this experimental result, a
detailed comparison was made by Aguilera-Granja
et al.219 between fcc and icosahedral structures for a
number of clusters. N ) 36, 37, 38, 39 were selected
to cover sizes in the neighborhood of Ni38. For N )
13, 19, 43, 55, one can construct fcc clusters with
filled coordination shells around a central atom, and
for N ) 14, 38, 68, one can construct clusters with
filled coordination shells around an empty octahedral
site of the fcc lattice. Finally, N ) 23, 24, 44 are of
interest for comparison with other works. For all
these clusters one or several initial fcc arrangements
were relaxed by the steepest-descent method. In some
cases, the lowest energy structure obtained was
distorted but the fcc structure was still recognizable.
In all the cases studied, the difference in binding
energy ∆Eb ) Eb(ico) - Eb(fcc) was positive, that is,
the ico structure was more stable, except precisely
for Ni38, where ∆Eb is negative. ∆Eb was nearly zero
for Ni36 and lower than 0.2 eV (although positive)

between Ni24 and Ni39. ∆Eb increases as N departs
from this region. The fcc geometry of Ni38 is a compact
structure formed by three complete coordination
shells around an empty octahedral site. The six atoms
of the internal octahedron are fully coordinated (Z )
12). For Ni38, µjfcc ) 0.99 µB, which cuts the difference
between the experimental and theoretical results to
one-third of the value in Figure 9 (µjexp - µjfcc ) 0.04
µB and µjexp - µjico ) 0.11 µB). This moderate increase
of µj with respect to the icosahedral structure can be
explained by the lower average coordination of the
fcc structure (Zh (fcc) ) 7.58 while Zh (ico) ) 7.74). For
Ni36, µj is very similar for the ico and fcc structures
(0.87 and 0.86 µB, respectively). Since energy differ-
ences between isomers in the region N ) 24-40 are
small (within 0.4 eV), the possibility of different
isomers contributing to the measured values of µj(N)
should not be excluded.

Explaining the maxima observed by Apsel et al.
seems to be a more difficult task. Those maxima are
not seen in the TB results, and this also affects the
shape of the minimum at Ni55. One possibility,
suggested by calculation of the magnetic moments
of small fcc clusters by Guevara et al.215 and by MD
simulations using a TB Hamiltonian182 (see section
IX.B below), is that the structures are fcc instead of
icosahedral in the regions corresponding to those
maxima. Guevara et al. predict sharp maxima at Ni19
and Ni43 and minima at Ni28 and Ni55 (the last two
are fcc cuboctahedrons). But the arguments given
above suggest that Ni19 is a double icosahedron. The
minimum at Ni28 is also given by the icosahedral
model. So the only clear prediction in favor of fcc
structure may be the maximum at Ni43.

To investigate further the effect of the geometrical
structure, Rodrı́guez-López et al.224 have performed
additional calculations for geometries proposed by
other authors, obtained from different semiempirical
potentials. Atomic structures have been determined
by Nayak et al.225 by performing MD simulations
with the Finnis-Sinclair potential,77,184 which is also
based on the TB method and contains many-body
interactions (see eqs 9 and 10), and by Hu et al.226

using both Leonard-Jones and Morse potentials. The
results were compared to experiment and to the
icosahedral growth model. The main conclusion is
that the differences in µj produced by the structures
corresponding to the different interatomic potentials
are not large and the results for the different sets of
potentials are roughly consistent with each other. For
all potentials µj(N) shows an overall decrease with N
and the oscillations at small N are reproduced
reasonably well. All the calculations, however, give
a faster decrease of µj(N) and predict a faster ap-
proach to µ(bulk). Concerning the differences for
different potentials, these are driven mainly by the
differences in interatomic distances which affect, first
of all, the hopping integrals and consequently the
electronic structure. As expected, lower interatomic
distances result in smaller magnetic moments. An-
other source of differences arises from intrinsic
structural changes associated with the different
potentials. The average coordination number reflects,
to some extent, structural differences, although it is
not a very precise indicator.
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These new results do not resolve the discrepancies
between TB calculations and experiment: namely,
the near constancy of µj between Ni14 and Ni20, etc.
This suggests that a possible misrepresentation of the
exact geometry is not the only missing ingredient.
We think that the treatment of the sp electrons in
the TB model may not be accurate enough. A simple
alternative model of the magnetic moments, which
is described in section IX.C, gives a hint for the
reasons.

B. Tight-Binding Molecular Dynamics
TB calculations of the magnetic moments have also

been performed by Andriotis and co-workers227,228 for
Ni, Fe, and Co clusters. Two main differences can be
noticed with respect to the calculations of Alonso and
co-workers.218,219 The geometrical structures are ob-
tained by Andriotis et al. using a MD method in
which the forces on the atoms are calculated within
the TB scheme.181,182,229 For this purpose, the cluster
energy was written

where Eel ) ∑iσεiσ is the usual sum of one-electron
energy eigenvalues over the occupied states. The
second term

accounts for the repulsive ion-ion interactions and
is also intended to correct for the double-counting
terms in Eel arising from Coulomb and exchange
interactions. This repulsive term was assumed to
scale exponentially with the interatomic distance rij

where d is the bond length in the bulk material. The
value of φo was chosen to reproduce the correct bond
length of the dimer at its correct magnetic state.227

The third term is a coordination-dependent correc-
tion, originally introduced by Tomanek and Schlut-
er230

where NB is the number of bonds per atom of the
cluster and N is the number of atoms. This term does
not contribute to the forces on the atoms but is
necessary to reproduce cohesive energies of dimers
through bulk. The parameters a and b are obtained
by fitting Ubond to ab initio results for the total energy
of small clusters (N e 5) according to the equation

A form for Ubond, quadratic in (NB/N), instead of
linear, has also been used.229 However, these TB
calculations are not self-consistent and contain sev-
eral approximations. In a first set of calculations,
dealing with cluster structure only, Andriotis et
al.181,182,229 assumed the diagonal matrix elements of

the TB Hamiltonian to be simply the atomic term
values, independent of the local environment and
equal to the values given by Harrison.10 They set εs

) εd, and εp was taken to be large enough to prevent
p-orbital mixing. The off-diagonal terms also made
use of universal parameters given by Harrison.10 The
study of Menon et al.229 for small NiN clusters and
the comparison they made with ab initio methods
serves to illustrate the difficulties in predicting the
ground-state structure. Some details of that compari-
son are now provided, although it has to be stressed
that the majority of the ab initio calculations for Ni
clusters with N > 3 refer to symmetry-restricted
optimized geometries. For Ni3, the TB calculation
gives the D3h symmetry (triangular) as the ground
state, 1.7 eV more favorable than the linear (D∞h)
isomer. In contrast, Basch et al.231 found the linear
cluster to be slightly more stable. For Ni4, the TB
ground state is a perfect square (D4h), in agreement
with Basch et al.231 For this cluster, Mlynarsky and
Salahub232 found a tetrahedral (Td) ground state. The
Td structure was unstable in the TBMD simulations,
distorting to the planar D4h geometry. The TB ground
state of Ni5 is a distorted tetragonal pyramid. Up to
Ni4 there is agreement with the ab initio DFT
geometries of Reuse and Khanna,63 but the prediction
of these authors for Ni5 is a trigonal bipyramid. The
TB ground state of Ni6 is a tetragonal bipyramid with
a rhombic base. This distortion is in qualitative
agreement with Yu and Almlof,233 who considered
Jahn-Teller distortions in octahedral Ni6. A pen-
tagonal bipyramid is the ground state of Ni7, in
agreement with Nygren et al.75 Bicapped, tricapped,
and tetracapped octahedra were predicted to be the
ground state of Ni8, Ni9, and Ni10, respectively. These
structures were found to be distorted: the base of the
octahedron is a rhombus in Ni8 and Ni10 and is not
even planar in Ni9. In comparison with the results
of Bouarab et al.,218 we notice discrepancies for the
structures of Ni5, Ni9, and Ni10 and a minor discrep-
ancy for Ni8. The TBMD method was also used for a
number of selected larger clusters: Ni13, Ni14, Ni15,
Ni19, Ni23, Ni24, Ni26, Ni33, Ni38, Ni43, Ni44, and Ni55.
For some of those, N ) 13, 19, 23, 24, 38, 55,
icosahedral and crystalline-like fcc arrangements
were relaxed and their binding energies compared.
The icosahedral structure was found to be substan-
tially more stable for Ni13 and Ni55 (by 0.43 eV/atom
in the first case and by 0.17 eV/atom in the second),
while for Ni19, Ni23, Ni24, and Ni38 the ground state
was fcc. Only for Ni38 was the difference in binding
energy substantial (0.17 eV/atom, in reasonable
agreement with ref 219), whereas for Ni19, Ni23, and
Ni24 it is about one-third of this value or less. For
the other sizes a direct comparison is not possible
because only one structure was relaxed. One can
enlarge the comparison by performing linear inter-
polations between studied sizes (either fcc or Ico).
Accepting the values from those interpolations as
approximate (see Figure 11 of ref 182), one arrives
at the conclusion that the Ico structures are more
stable from N ) 13 to 18, from N ) 46 to 55, and in
a narrow region around N ) 33. For other sizes, fcc
structures appear to be more stable in the TBMD

E ) Eel + Urep + Ubond (51)

Urep ) ∑
i>j

φ(rij) (52)

φ(rij) ) φo exp[-4R(rij - d)] (53)

Ubond ) N[a(NB/N) + b] (54)

Ubond ) Eab initio - Eel - Urep (55)
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calculations. The main message here is the strong
competition between fcc and Ico structures.

The approximations made prevented the study of
magnetism, so in a second set of improved TBMD
calculations, Andriotis and workers227,228 used a spin-
unrestricted TB Hamiltonian in which the necessary
spin dependence of the diagonal matrix elements is
introduced using the Hubbard (H) approximation,139

like in eq 47. For this reason the method was called
the H-TBMD method. The use of the full correction
to εiR

0 given in eq 47 is still cumbersome in a MD
simulation, and Andriotis et al. made drastic simpli-
fications, by setting

with the adjustable parameter s0 having the meaning
of an effective exchange interaction, independent of
the type of orbitals and lattice sites. s0 was deter-
mined to reproduce the correct spacing of the higher-
spin states of small clusters (N e 5) available from
accurate ab initio calculations.232 The approximation
εs

0 ) εd
0, with values from Harrison,10 was retained

in the calculations. In summary, the H-TBMD method
introduces just a single extra adjustable parameter
compared to TBMD. The use of the effective Hubbard
term induces qualitative changes in the ground-state
geometries of very small clusters, like Ni3, Ni4, and
Ni5 (the last one is now a trigonal bipyramid,
although very close in energy to the square pyra-
mid227) but not for Ni6.

A salient effect for larger clusters is that the
icosahedral structure of Ni13 relaxes to a more stable
very distorted prism-like structure, only 0.02 eV/atom
less stable than the structure obtained by relaxing
fcc structures. Without magnetic effects, icosahedral
Ni19 was 0.135 eV/atom less stable than the fcc
structure; then for magnetic Ni19, the fcc structure
(with µj ) 0.842 µB) is only 0.013 eV/atom more stable
than the icosahedral one (with µj ) 1.158 µB). For Ni13,
magnetism does not alter the difference in binding
energy between fcc and Ico: 0.131 eV/atom. The
calculated magnetic moments show that the results
are sensitive to the parameters of the TB method:
Andriotis et al.227 obtained a maximum of µj at Ni13
(in contrast with the experimental minimum) and a
minimum at Ni7 (while the experimental minimum
occurs at Ni6). With a different parametrization,228

they recover the correct minima of µj at Ni6 and Ni13
with a maximum at Ni7 instead of Ni8.

TBMD calculations of the magnetic moments have
been performed for Fe and Co clusters.228 In these
cases a detailed comparison with experiment is very
difficult and only some trends are available. The
calculations for Fe reveal the expected strong depen-
dence of µj with cluster size and geometry, especially
for small clusters, and the decrease of µj with increas-
ing average number of bonds per atom. Another
message from the calculations is the negligible im-
portance of s-d interactions, already noticed by
Pastor and co-workers,213,234 in contrast to Ni clusters.
For Co, the limited availability of experimental data
and ab initio results makes the fitting of the TB
parameters difficult. For Co43, the calculated mag-

netic moment was a 10% lower than the experimental
value,185,186,191 and for Co141, the TB result is consis-
tent with experiment.

C. Influence of s Electrons

An alternative model has been proposed by Fujima
and Yamaguchi235 for explaining the structure of µj-
(N) for Ni clusters. In our opinion,219 the model is not
adequate to explain the minima of µj(N) but it may
well contain the additional ingredients required to
explain the maxima. It is intriguing that the observed
maxima are located at N ) 8 and 71 and near N )
20 and 40.76 These numbers remind us of some of the
electronic shell closing numbers of alkali- and noble-
metal clusters (N ) 8, 20, 40, 58, 72), which are
explained by the spherical jellium model. The model
of Fujima and Yamaguchi distinguishes between
localized 3d-derived levels and delocalized molecular
orbitals derived from the atomic 4s electrons and
neglects any hybridization between d and delocalized
electrons. The delocalized electrons are treated as
moving in an effective harmonic potential, and the
corresponding levels initially lie above the Fermi
energy in very small Ni clusters. But as N grows, the
binding energy of these delocalized states increases
and the levels become successively buried below the
3d band. The model assumes that this occurs abruptly
when the number of delocalized electrons is just
enough to fill a shell in that harmonic potential.
Associated with this stepwise effect, there is a sudden
increase of the number of holes at the top of the
minority spin d band, since the total number of
valence electrons per Ni atom is 10: the number of
holes is equal to the number of unpaired electrons
in the cluster, so an abrupt increase of µj occurs. The
stepwise mechanism of transfer of 4s-derived levels
from above the Fermi energy to below the d band is
supported by density functional calculations.236 Then
the maxima of µj observed in the experiments for N
e 100 could be related to this effect. However, in the
model the maxima and the minima of µj are too close
due to the drastic assumption of the transfer of a
whole shell at once when the conditions of shell
closing are met. This is in contrast to the experimen-
tal observation, where the maxima and minima are
well separated and, furthermore, the minima appear
to be due, as discussed in previous sections, to
structural effects.

The TB model distinguishes between sp and d
electrons, and the analysis of the density of states
indicates that groups of levels with non-d character
progressively appear below the d band as N in-
creases.219 However, this transfer is smooth (not
sharp) and there is, in addition, sizable sp-d hybrid-
ization. In short, the TB calculations do not produce
the sharp shell-closing effects assumed in the model
of Fujima and Yamaguchi. It is not evident if this is
a failure of the TB method or if this behavior may be
reproduced with a different fit of the TB parameters.
This immediately suggests that one perform density
functional (DFT) calculations that in principle in-
clude the required ingredients for a full explanation
of the behavior of µj.

εiRσ ) εiR
0 - σs0 (56)
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X. Density Functional Studies of the Magnetism
of Clusters of 3d Elements

These calculations become difficult for large clus-
ters, especially if one wishes to determine the equi-
librium lowest energy geometrical structure. For this
reason, only very small Ni clusters have been studied
by DFT. Reuse and Khanna63 have calculated µj for
NiN with N ) 2-6, 8, 13. The trend of decreasing µj
between Ni5 and Ni6 and between Ni8 and Ni13 was
obtained, but the magnetic moments of Ni6 and Ni8
were predicted to be nearly equal, while the experi-
ment gives a larger moment for Ni8 (see Figure 9).
The geometries employed for Ni5, Ni6, and Ni13 are
similar to those of Bouarab et al.,218 i.e., bipyramids
for Ni5 and Ni6 and the icosahedron for Ni13, although
with smaller interatomic distances (the smaller
interatomic distances may account for the lower
moments). The geometry of Ni8 was a regular cube.
Bouarab et al.218 have performed additional TB
calculations with the same interatomic distances and
structures of Reuse and Khanna, and the magnetic
moments differed by no more than 0.06 µB from the
TB values of Figure 9, so the differences between the
TB results of Bouarab et al. and the DFT results of
Reuse and Khanna have to be ascribed to the differ-
ent treatment of the electronic interactions and not
to differences in geometry or interatomic distances.
Desmarais et al.78 have studied Ni7 and Ni8 with the
same technique as Reuse and Khanna.63 The mag-
netic moment in the ground state of Ni7 (capped
octahedron) is µj ) 1.14 µB/atom, and the same value
was obtained for all the low-lying isomers (pentago-
nal bipyramid, tricapped tetrahedron, and capped
trigonal prism). The same effect was found for Ni8.
In this case a moment µj ) 1.0 µB/atom was obtained
for the ground state (bisdisphenoid) and all its low-
lying isomers. This insensitivity of the magnetic
moment to atomic structure in Ni7 and Ni8, also found
in calculations for Ni4,63 is striking.

Reddy et al.70 have used DFT to calculate the
magnetic moments of NiN up to N ) 21. For N less
than or equal to 6, they employed ab initio geometries
(discussed above). For N larger than 6, the geometries
were those optimized by Nayak et al.225 with the
Finnis-Sinclair potential.77 Compared to the experi-
mental moments of Figure 9, the calculation of Reddy
et al. predicts substantially smaller moments and
important discrepancies occur in the detailed varia-
tion of µj with N: for instance, Ni6 and Ni13 are not
local minima in the calculation. Those strong dis-
crepancies are surprising. Reddy et al. discussed the
possible sources and concluded that the cluster
temperature may be at the heart of the problem, as
the validity of the superparamagnetic model used to
fit the experiment depends on the cluster tempera-
ture. This may not be the only reason for the
discrepancies between experiment and DFT calcula-
tions as the TB results in Figure 9 accurately
reproduce the qualitative behavior of µj for N up to
16.

The “local” magnetic moments at different cluster
sites were studied by Fujima and Yamaguchi238 using
the spin-polarized discrete variational XR method (in
an LCAO framework). In this method the exchange-

correlation energy is given by (in Hartree atomic
units)

where Fσ(r) denotes the spin (v or V) density at r and
R ) 0.7 for Ni. fcc structures and bulk interatomic
distances were assumed, with an octahedron and a
cuboctahedron for the shapes of Ni19 and Ni55,
respectively. The local magnetic moments were es-
timated by the unpaired 3d electron component at
each atomic site, calculated by the Mulliken popula-
tion analysis. There are no significant differences
between the moments of atoms at different surface
sites, and the moments of atoms of the layer im-
mediately below the surface are smaller by ∼0.2 µB.
The average magnetic moments µj(Ni19) ) 0.58 µB and
µj(Ni55) ) 0.73 µB are significantly lower than the
measured ones. A similar approach was followed by
Pacchioni et al.,237 who calculated the electronic
structure of Ni6, Ni13, Ni19, Ni38, Ni44, Ni55, Ni79, and
Ni147 by an all-electron linear combination of Gauss-
ian orbitals (LCGO) method with the exchange-
correlation effects described by the XR method (R )
0.7). The structures were assumed icosahedral (Ni13,
Ni55, Ni147) or with Oh symmetry (Ni6, Ni13, Ni19, Ni38,
Ni44, Ni55, Ni79; in most cases fragments of an fcc
lattice). The first-neighbors distances were fixed at
the bulk Ni-Ni separation of 2.49 Å, which is
mandatory for large clusters. Even for the largest
cluster, convergence of the binding energy and aver-
age magnetic moment to the bulk limit was not
observed: the atoms of the two most internal shells
in Ni147 have local magnetic moments still well below
the bulk value. On the other hand, the width of the
3d band is almost converged for N ) 40-50. The DFT
calculations performed up to now for Ni clusters are
few and mostly for small clusters. One hopes to see
more studies in the future, especially for large
clusters. In the meantime the detailed variation of µj
with N for Ni clusters is still an open problem that
can only be solved with a careful and consistent
treatment of both the geometrical structure (which
requires a full minimization of the total energy) and
the “self-consistent” electronic structure.

Fujima and Yamaguchi238 also studied Fe and Cr
clusters with N ) 15 and 35 assuming a bcc struc-
ture: a rhombic dodecahedron. A low value of µ at
layer 2 is obtained for Fe. The empirical magnetic
shell model of Billas et al.185,186 also gives a decrease
at layer 2 for Ni and Fe clusters (see section VIII.C
above). For Cr, an alternation of the signs of the local
moments as a function of the distance to the cluster
center is obtained; the absolute values |µ| of the local
moments decrease with increasing local coordination
and also decrease for decreasing interatomic distance.
This sensitivity was also predicted earlier by Lee et
al.239 For Fe clusters, in contrast, the local moments
are less sensitive to local atomic coordination. The
DFT calculations of Cheng and Wang113 also show
that the Cr clusters are antiferromagnetic, and the
dimer growth route discovered by these authors (see
section IV.E) leads to the prediction of an odd-even
alternation of the average moment: small magnetic

Exc ) -3R( 3
4π)4/3∫[Fv(r)4/3 + FV(r)4/3]dr (57)
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moments for the even-N clusters and large moments
for the odd ones. The large moments arise from the
quasiatomic character of the capping atoms; the
dimer-paired even-N clusters have low µj because of
the strong intradimer 3d-3d interaction. In most
cases, the calculated moments are within the experi-
mental limit of 0.77 µB imposed by the experiments
of Douglass et al.240 But for Cr12 and Cr13, the
predicted µj is larger than this limit, especially for
C12 (µj ) 1.67 µB). This discrepancy waits to be
resolved.

The properties of Mn are peculiar. In the bulk it
has the smallest bulk modulus and cohesive energy
of the 3d metals and the most complex lattice
structure, with several allotropic forms. Some of its
bulk phases are antiferromagnetic, while monolay-
ers241 and supported Mn clusters242 exhibit nearly
degenerate ferromagnetic and antiferromagnetic
states. The bond length of the dimer, 6.43 au,243 is
larger than the nearest-neighbor distance in the bulk,
in contrast to all other transition metals. Mn2 is
considered close to a van der Waals molecule,243 with
an estimated very small binding energy between 0.1
and 0.6 eV.244 This character arises from the elec-
tronic configuration of the atom, 3d54s2, in which the
electrons of the half-filled 3d shell are more localized
compared to other 3d atoms and do not interact with
those of the other atom, and consequently the binding
in Mn2 arises from the weak interaction between the
filled 4s shells. A nonmetal to metal transition is
expected for clusters of a certain critical size. From
an analysis of the reactivity of MnN clusters with
hydrogen, Parks et al.245 have suggested that this
transition occurs at N ) 16, although the ionization
potential does not display any special feature (such
as an abrupt change) at that size.246

The most interesting expectations arise from the
large magnetic moment (5 µB) of the free atom. Since
the interaction between the atoms in Mn2 and in
other small clusters is believed to be weak, one can
expect that the magnetic moments would retain their
free atomic character. If these moments would couple
ferromagnetically, a MnN cluster would carry a
“large” moment of 5 NµB, which is remarkable. The
only experiments measuring the magnetic moments
are for small Mn clusters embedded in matrices.
Electron spin paramagnetic resonance (ESR) studies
of Mn2 in inert-gas matrices yield an antiferromag-
netic configuration but charged Mn2

+ is ferromag-
netic with a total magnetic moment of 11 µB.247 Mn5
also embedded in inert-gas matrices has a moment
of 25 µB,243 although the cluster could be larger. Mn4
in a silicon matrix appears to have a moment of 20
µB.248 Why Mn2 is antiferromagnetic while the other
clusters are ferromagnetic is not yet explained.

An early approximate Hartree-Fock calculation by
Nesbet249 obtained for Mn2 a 1∑g

+ ground-state
resulting from antiferromagnetic coupling of the
localized spins. The predicted value of the Heisenberg
exchange energy parameter was small and negative,
J ) - 4.1 cm-1. The ESR measurements for Mn2
isolated in inert gas matrices performed several years
later,243,250 as well as optical absorption and magnetic
circular dichroism experiments,251 gave values of J

in the range of - 8 to -10 cm-1, consistent with the
prediction of Nesbet. Fujima and Yamaguchi252 stud-
ied MnN with N ) 2-7 using the discrete varia-
tional- XR-LCAO method. The interatomic dis-
tances were optimized within constrained geometries.
All the clusters were reported to show antiparallel
spin ordering. Nayak and Jena253 have optimized the
equilibrium geometries for N e 5 at two levels of
approximation: LSDA and the generalized gradient
approximation (GGA). The calculated bond length
and binding energy of Mn2 are very sensitive to the
treatment of exchange and correlation, and only the
GGA calculations at the B3LYP level254,255 are able
to explain some of the experimental results (the
calculated bond length is 6.67 au and the binding
energy 0.06 eV). The B3LYP is a hybrid method that
includes a part of the Hartree-Fock exchange cal-
culated via the Kohn-Sham orbitals. The use of
diffuse functions in the basis was found to be crucial
to yield a weakly bonded molecule. However, Mn2 is
predicted to be ferromagnetic with a magnetic mo-
ment of 10 µB. After ionization to yield Mn2

+, the
binding energy increases and the bond length de-
creases, since the electron is removed from an anti-
bonding orbital. The results for Mn2

+ are less sensi-
tive to the level of exchange and correlation. Its total
magnetic moment is 11 µB, in agreement with the
estimation from experiments for clusters in rare-gas
matrices.247 The predicted geometries of MnN, N )
3, 4, and 5 are compact: equilateral triangle, Jahn-
Teller-distorted tetrahedron, and trigonal bipyramid,
respectively. The strength of the bonding increases
significantly with respect to the dimer (0.25, 0.50, and
0.55 eV/atom for N ) 3, 4, and 5, respectively) due
to s-d hybridization, although it remains small
compared to other transition-metal clusters. The
ground-state geometries are consistent with experi-
ments in matrices. Ludwig et al.248 have studied Mn4

embedded in a solid silicon matrix and observed a
hyperfine pattern of 21 lines, indicating that the four
atoms are equivalent, consistent with a tetrahedral
structure with the Mn atoms probably in interstitial
sites. The triangular bipyramid is one of the possible
structures of Mn5 consistent with the ESR experi-
ments of Baumann et al.243 The calculated inter-
atomic distances decrease substantially from Mn2 to
Mn3, which indicates the onset of delocalization and
hybridization between atomic orbitals at various
sites. The calculated ionization potentials have values
within 0.5 eV of the measured ones.246 But the most
striking property of these clusters in their ability to
retain their atomic moments. Mn3, Mn4, and Mn5 in
their ground state are ferromagnetic, with moments
per atom µj ) 5 µB in the three cases (low-lying
isomers are also ferromagnetic and with large mag-
netic moments). These large magnetic moments put
small Mn clusters in a special place within the
transition-metal series and give expectations for
using those molecular magnets in future high-density
information storage technology. Experiments should
be welcome to confirm this extraordinary behavior.
Calculations for monolayers241 and supported clus-
ters242 lead to the same conclusion, and recent
experiments seem to bear out the possibility of large
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moments.256,257 Experiments on free Mn2 may clarify
the discrepancy between experiment (on matrices)
and theory concerning the magnetic character of this
cluster.

Recent DFT calculations by Pederson et al.258 give
further insight on this discrepancy. They used LDA
and GGA functionals259 and performed a detailed
study of Mn2. Their conclusion is that this dimer is
ferromagnetic with a total moment µ ) 10 µB (equi-
librium separation of 4.93 au and binding energy of
0.99 eV). An antiferromagnetic state was also found
with lower binding energy (0.54 eV) and larger bond
length (5.13 au). Evidently, the characteristics of this
isomer are closer to those of Mn2 in matrices. One
could blame the discrepancy on some misrepresenta-
tion of correlation effects by the GGA. Pederson and
co-workers have argued that self-interaction correc-
tions (SIC) will not change matters, and then one is
led to trust the DFT result. A plausible explanation
of the discrepancy is, according to these workers, that
the ferromagnetic state is the true ground state of
free Mn2 but that the van der Waals interactions
between this cluster and the matrix may stretch the
bond, leading to the appearance of the antiferromag-
netic state in the embedded cluster. Apart from the
two states discussed, other metastable states were
found with different magnetic moments and cohesive
energies: for these the bond length decreases mono-
tonically as the net moment decreases. Larger clus-
ters were also studied. Mn3 also has close magnetic
states. The ground state is a isosceles triangle in a
ferromagnetic state (total moment of 15 µB), and a
frustrated antiferromagnetic solution also exits with
the atomic d spins of the shorter side of the triangle
ferromagnetically coupled while the third atom is
antiferromagnetically coupled to the other two. This
state, with a net moment of 5 µB, is only 0.014 eV
less stable than the ground state. In addition, the
triangle is very close to equilateral. Mn4 was found
to be a tetrahedron with total moment 20 µB, that is
5 µB/atom. For the intriguing case of Mn5, the
calculation predicts a trigonal bipyramid with a net
spin of 23 µB, lower than the measured moment of
25 µB. Trigonal bipyramid and square pyramid states
with a moment of 25 µB are high in energy: 0.62 and
1.20 eV above the ground state, respectively. This led
Pederson to conclude that either the matrix influ-
ences the ground-state multiplicity of Mn5 or the
cluster formed in the experiment is one other than
Mn5; this later possibility had also been admitted by
Bauman et al.243 A square bipyramid and a pentago-
nal pyramid were investigated for Mn6. The total
moments are 26 and 28 µB, respectively, and the
second structure is less stable by 1.6 eV. The electron
affinity of the square bipyramid is large (1.36 eV),
and Mn6

- was proposed as a possible candidate for
the 25 µB cluster observed in the ESR experiments.
The structure of Mn7 is formed by two eclipsed
triangles with a single atom cap (C3v symmetry). The
ionization energy I ) 5.51 eV is in good agreement
with the recent measurement of Koretsky and Knick-
elbein,246 who found I ) 5.44 eV. The geometry of Mn8
is complex. To summarize the results, Table 3 gives
the average bond distance, number of bonds per

atom, average magnetic moment per atom and bind-
ing energy for Mn2-Mn8. Also given are the two spin
gaps ∆1 ) εHOMO

majority - εLUMO
minority and ∆2 )

εHOMO
minority - εLUMO

majority. These represent the energy
required to move an infinitesimal amount of charge
from the HOMO of one spin to the LUMO of the
other. The two spin gaps have to be positive for the
system to be magnetically stable.

An interesting topic deserving to be mentioned here
is the change in the electronic structure of a transi-
tion-metal cluster when a ligand shell is added. The
ligand molecules induce perturbations on the elec-
tronic structure of the atoms on the surface of the
cluster.260 A striking effect is the almost complete
quenching of the magnetic moments of the surface
atoms in large Ni clusters by CO ligands, demon-
strated by experimental magnetization studies and
DFT calculations.261 The explanation is that ligands
with σ-lone pairs, like CO, interact repulsively with
the diffuse 4sp electrons of the Ni atoms inducing a
configurational transition 3d94s1 f 3d10 that fills the
3d shell. The calculations show that this repulsive
destabilization is produced even by a shell of He
atoms.237 DFT studies of NH3 adsorption by NiN (N
) 1-4) also indicate a significant effect on the
magnetism of the NiN clusters.262 Adsorption of NH3
leads to a decrease of the Ni moments, which are
completely quenched when the number of NH3 units
equals the number of Ni atoms. The nitrogen atom
binds directly to a Ni atom, and the quenching of the
magnetic moment of Ni occurs because the Ni-
nitrogen bond distance is short. When the number
of NH3 molecules is larger than the number of Ni
atoms, the Ni-nitrogen bonds are stretched due to
steric hindrance, the Ni-nitrogen distances exceed
the critical distance of 1.9 Å, and magnetism reap-
pears.

XI. Magnetism in Clusters of 4d Elements
All the 4d metals are nonmagnetic in the equilib-

rium bulk phase. But, since the free atoms are
magnetic due to Hund’s rules, it should not be
surprising that small clusters of some of the 4d
elements are magnetic. Experiments196 show that
small RhN clusters with less than 60 atoms are
magnetic, and RuN and PdN clusters with less than
12 atoms appear to be magnetic also. No experimen-
tal data are available for the other elements. Several
calculations have investigated the magnetic proper-
ties of these clusters. Since the atomic structure is
unknown, most of the calculations assumed model

Table 3. Average Bond Distance d, Number of Bonds
per Atom NB, Magnetic Moment per Atom µj, and
Binding Energy per Atom Eb for MnN as a Function of
N, in addition to Spin Gaps ∆1 ) EHOMO

majority -
ELUMO

minority and ∆2 ) EHOMO
minority - ELUMO

majority

N d (au) NB µj (µB) Eb (eV/atom) ∆1 (eV) ∆2 (eV)

2 4.927 0.5 5.0 0.50 0.65 1.30
3 5.093 1.0 5.0 0.81 0.46 1.38
4 5.162 1.5 5.0 1.19 0.62 2.31
5 5.053 1.8 4.6 1.39 0.50 0.79
6 5.002 2.0 4.3 1.56 0.90 1.13
7 4.970 2.1 4.2 1.57 0.70 0.47
8 4.957 2.2 4.0 1.67 0.93 0.37
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structures. Zhang et al.62 performed LCAO-molec-
ular orbital calculations within the frame of the DFT
formalism. The clusters had six atoms in octahedral
symmetry, and the most interesting feature of this
work is that a systematic study of trends was done
across the whole 4d period: namely, for Y6, Zr6, Nb6,
Mo6, Tc6, Ru6, Rh6, Pd6, Ag6, and Cd6. The clusters
were allowed to relax radially. The general binding
trends have been discussed in section III. The cal-
culated magnetic moments per atom are given in
Table 1. Each cluster, except Y6, Pd6, and Cd6, has a
finite magnetic moment, and the largest moments
occur for Ru6 and Rh6 (1.00 and 0.99 µB, respectively).
The picture is different compared to the bulk metals.
To understand the large moments of Ru6 and Rh6,
Zhang et al. plotted the total density of states, which
is characterized by having a large peak in the energy
region of the Fermi level. This high DOS contributes
strongly to the large moments because a small shift
between up and down spin subbands (exchange
splitting) results in a sizable difference between the
population of up and down spin electrons. In fact Ru6,
Rh6, and Nb6 have the largest exchange splittings
across the 4d period (splittings of the order of 0.5 eV
for the sp band and 0.7 eV for the d band). In
contrast, the Fermi levels of the bulk metals lie in a
dip of DOS. The main contribution to the DOS of the
occupied valence band of the clusters is from d
electrons. This gives support to some models in which
the sp electrons are altogether neglected. There are
two factors which contribute to the large DOS near
εF. First, the valence bandwidth of the cluster is
narrower than in the solid due to the reduced atomic
coordination. The narrower band results in a higher
DOS. Second, the high symmetry (octahedral) as-
sumed in the model enhances the degeneracies. The
last effect, however, suggests that some of the
magnetic moments of Table 1 may be overestimated.

The experiments for Rh clusters reveal an interest-
ing oscillatory pattern of µj(Ν), with large values for
N ) 15-16 and 19 and drops for N ) 13-14, 17-18,
and 20, and for this reason a number of calculations
have been performed, some of them using the LSDA.
In those studies only a few cluster sizes were con-
sidered and highly symmetric structures were as-
sumed, except for the very small ones. Galicia,263

Reddy et al.,264 and Piveteau et al.265 have studied
Rh13, concluding that it is magnetic. Jinlong et
al.266,267 studied clusters with N ) 2-8, 10, 12, 13,
19 and Li et al.268 clusters with N ) 6, 9, 13, 19, 43.
The clusters are magnetic at T ) 0 K, in qualitative
agreement with experiment. However, the results for
µj show a lot of dispersion. Taking Rh13 as an example,
the predicted magnetic moments are 0.69,268 1.00,263

1.15,266 1.62,264 and 1.69 µB.265 This is not surprising
for a system showing weak, non saturated itinerant
magnetism for which it is known that the magnetic
behavior is very sensitive to the details of the local
atomic environment and of the electronic struc-
ture.140,234,269

The self-consistent TB method has been employed
by Villaseñor-González et al.270 to study several RhN
clusters in the range 9 e N e 55, namely, N ) 9, 11,
13, 15, 17, 19, 20, 23, 27, 43, 51, and 55. Only the 4d

electrons were included in the calculations and model
structures (fcc-, bcc-, or icosahedral-like) were con-
sidered, although atomic relaxations preserving the
cluster symmetry were allowed in order to optimize
the cohesive energy (the necessary repulsive Born-
Mayer pair potential was, of course, included). A
twisted double-square pyramid was also studied for
Rh9. Important bond length contractions were ob-
tained (2-9% contraction with respect to the bulk
bond length). These contractions strongly affect the
magnetic moments: for instance, for fcc Rh13 with
bulk bond distances, µj ) 1.56 µB while the value for
the optimized bond length (3% contraction) is µj )
0.78 µB. The last value is in much better agreement
with experiment. A strong sensitivity of the magnetic
state with bond distance was also obtained by
Minemoto105 for V4

+ using DFT. The calculated µj(Ν)
of RhN oscillates as a function of N and tends to
decrease with increasing N. The twisted double-
square pyramid yields the largest cohesive energy for
Rh9 (2.38 eV/atom), and its moment µj ) 0.66 µB is in
good agreement with experiment (µj ) 0.8 ( 0.2 µB).
For Rh11 the icosahedral structure and a fcc structure
are degenerate (Eb ) 2.43 eV/atom), although only
the magnetic moment of the former isomer (µj ) 0.73
µB) is consistent with experiment (µj ) 0.8 ( 0.2 µB).
The most stable structure for Rh13 is bcc, with µj )
0.62 µB, in better agreement with experiment (µ )
0.48 ( 0.13 µB) than the other alternative structures
considered. In the range 15 e N e 43 the structures
are predicted fcc, and although the magnetic mo-
ments are systematically larger than the measured
ones, the trends in the size dependence are correctly
reproduced: local minima at N ) 13 and 17 and
maxima at N ) 15 and 19. This suggest that the
underlying structure in the range 15 e N e 20 could
be fcc-like. Furthermore, the other structures fail to
reproduce those oscillations. Finally, the icosahedral
structure is more stable for N ) 55, and its non
magnetic nature is also in better agreement with
experiment. In summary, the structures predicted to
be more stable by the TB calculation give a consistent
agreement with the measured magnetic moments.

Villaseñor-González et al. also studied the distribu-
tion of local magnetic moments in the clusters. The
bcc isomers order ferromagnetically and the local
atomic moments tend to increase from the cluster
center to the surface. Compact structures (fcc and
icosahedral) are more complex, and the magnetic
order is sometimes antiferromagnetic-like, with µj
changing sign between adjacent shells. A similar
behavior has been predicted for fcc Rh surfaces and
thin films.271 Finally, the effect of the sp electrons
was analyzed for Rh13. The main conclusion was that
the sp electrons provide a sizable contribution to the
binding energy (=3.2 eV/atom for Rh13). However, the
bond length contractions and the relative stabilities
between isomers were not significantly changed,
neither was the total magnetic moment, although the
local moments are more sensitive to sp-d hybridiza-
tion. Similar results were obtained by Guirado-López
et al.272 in their TB study of RhN (N ) 13, 19, 43, 55,
and 79) with fcc structure. Ferromagnetic order was
found for Rh13, Rh19, and Rh43 and antiferromagnetic
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configurations for Rh55 and Rh79, in agreement with
Villaseñor-González et al..270 The magnetic moments
for the larger clusters are very close to experiment,
and this was interpreted as an indication that fcc
structures could be preferred for N > 40. The high
sensitivity of the results to atomic relaxation was also
noticed. The magnetic-nonmagnetic transition was
estimated to be located at Nc ≈ 80.

The relationship between the magnetism, topology,
and reactivity of Rh clusters has been studied by
Nayak et al.273 These authors have found that
different isomers can have different magnetic struc-
tures, and these isomers can lead to different chemi-
cal reactivities. The studied case, using DFT tech-
niques (at the nonlocal GGA level), was Rh4. This
cluster has two isomers: the ground state is a
tetrahedron with a binding energy of 2.41 eV/atom.
The second isomer, a square, is only 0.60 eV/atom
less stable. Despite these two being close in energy,
the tetrahedron is nonmagnetic and the square is
magnetic with a moment of 1 µB/atom. In contrast,
Ni4 also has two nearly degenerate isomers (again
the tetrahedron and the square) but the average
magnetic moments per atom are the same. As already
discussed, the two effects that tend to control the
magnetic moment are coordination and interatomic
distance: increasing interatomic distance and de-
creasing coordination leads to an enhancement of the
magnetic moments since both factors tend to reduce
the electron wave function overlap. The coordination
in the tetrahedron (3) is larger than in the square
(2). On the other hand, nearest-neighbor interatomic
distances are only 0.1 Å larger, so the vanishing of
the magnetic moment seems to be associated to the
enhanced coordination. More insight is obtained from
the analysis of the distribution of orbital energy
levels. The square geometry of Rh4 has a larger
number of states near the HOMO, and it is known
from extended systems that a large density of states
near the Fermi energy usually leads to magnetic
structures. By allowing the two Rh4 isomers to react
with H2, the following conclusions were noted: (1)
H2 dissociates and binds atomically to both isomers;
(2) the binding energy of H2 to the nonmagnetic
isomer is larger by a factor of 2; (3) the spin
multiplicity of both isomers changes. This indicates
that the reactivity of transition-metal clusters may
depend sensitively of their magnetic structure and
topology. In fact, the existence of isomers has been
detected in reactivity experiments.74,172,274 Only one
of the forms of pure Rh4, the magnetic one, can be
deflected in a Stern-Gerlach magnet. On the other
hand, the two reacted forms of Rh4H2 are magnetic
with different spin multiplicities. Consequently, the
two reacted clusters will be deflected differently in a
Stern-Gerlach field. This provides a possible way to
test the theoretical predictions.

TB270,275 and DFT calculations264,276 have been
performed for Ru clusters. The TB method predits
lower average magnetic moments, in better agree-
ment with the experimental upper limits,196 but one
has to bear in mind that the sp electrons were not
included in the TB calculations. The magnetic-
nonmagnetic transition is estimated at Nc ≈ 19, a

value in satisfactory agreement with the experimen-
tal result (Nc g 13).196 Antiferromagnetic alignment
of the local moments is preferred for most of the
structures studied. Similar arrangements have been
found for Fe clusters; Fe is above Ru in the periodic
table, so a correlation seems to exist between the
magnetic properties of isoelectronic elements.

The magnetism of small palladium clusters is still
controversial. It has not been confirmed in the
experiments of Cox et al.,196 but these authors did
not exclude the possibility of magnetism and set
upper limits of 0.40 µB/atom for Pd13 and 0.13 µB/atom
for Pd105. Lee277 has performed DFT calculations,
using a linear combination of Gaussian orbitals, to
study the possible magnetism of Pd clusters with
restricted symmetrical fcc and bcc structures. Pd19

was modeled as a central atom surrounded by its 12
first nearest neighbors and 6 second nearest neigh-
bors in an fcc configuration (the structure of bulk Pd).
By varying the lattice constant and the magnetic
moment, Lee found a lowest energy state with lattice
constant of 7.42 au (identical to that found in DFT
calculations of bulk Pd)61 and a magnetic moment µj
) 0.32 µB/atom. A nonmagnetic state, with lower
binding energy was also found. To confirm the
possibility of magnetism, Pd15 with a bcc structure
(central atom with its 8 first nearest neighbors and
6 second nearest neighbors) was also studied. For a
lattice constant of 5.83 au, such that the volume per
atom is the same as for bulk fcc palladium, only one
state, magnetic in fact, was found. The calculated
moment was 0.53 µB/atom. A previous calculation for
fcc Pd13 by the same author278 gave two states with
magnetic moments µj ) 0.0 and 0.46 µB/atom. In
summary, Lee’s calculations support the possibility
of small magnetic moments in palladium clusters.

XII. Noncollinear Magnetism in Iron Clusters

The γ phase of bulk iron exhibits a spin-spiral
structure.279,280 Noncollinear magnetic configurations
occur easily in low-symmetry systems and in disor-
dered ones.281,282 One can then expect noncollinear
spin configurations in clusters of transition metals.
However, the usual DFT(LSDA) calculations de-
scribed in previous sections assume spin alignment
through the system. Generalized LSDA calculations
allowing for noncollinear magnetic structures have
been performed for solids,280,283-286 and Car and co-
workers287 have extended this idea to Fe clusters.
They have combined a LSDA scheme in which the
direction of the magnetization is fully unconstrained
as a function of position with the ab initio molecular
dynamics method.35 In the LSDA,288 the one-electron
states are described by two-component spinors Ψ(r)
) (φ1(r), φ2(r)). The density matrix is defined

where R and â are spin indices and fi is the occupation
number of the ith single-particle state. The density

ΓRâ(r) ) ∑
i

fiφRi(r)φâi
/ (r) (58)
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matrix can be written as

where F(r) is the charge density, σ0 is the unit matrix,
σk (k ) x, y, z) are the Pauli spin matrices, and mk(r)
are the Cartesian components of the spin-density
vector m(r). In this scheme the spin quantization axis
of each state can vary with position.

Following the ab initio MD scheme,35 the electronic
wave functions {Ψi} and the atomic positions {Ri}
are simultaneously optimized by minimizing the total
energy for noncollinear spin structures.288,289 Ultra-
soft pseudopotentials290 were used including the 3s
and 3p states of Fe into the valence group. The
ultrasoft pseudopotentials make the calculations as
accurate as the all-electron calculations.291 The mag-
netic moment of each atom in the clusters was
estimated by integrating the spin density within
spheres of radius 1.7 au centered on the atoms. The
ground state of Fe5 is a D3h structure (trigonal
bipyramid) with a noncollinear spin arrangement.
The three atoms of the basal plane (xy-plane) have
atomic moments of 2.72 µB pointing in the same
direction (taken as the z direction; spin-orbit effects
are not included) and the two apical atoms have
moments of magnitude 2.71 µB, tilted in opposite
directions by approximately 30° with respect to the
moments of the basal atoms. The binding energy of
this cluster is Eb ) 3.46 eV/atom, and its total
moment is 14.57 µB. An isomer with the D3h structure
was found having a collinear arrangement, with
atomic moments of 2.58 µB and 2.55 µB for the basal
and apical atoms, respectively. The binding energy
is Eb ) 3.45 eV/atom, only 0.01 eV/atom above the
ground state. For Fe3, a linear structure with a
noncollinear arrangement was found: the central
atom has a moment 1.27 µB oriented perpendicularly
to the linear axis and the two edge atoms have
moments of magnitude 2.89 µB, tilted by (10° with
respect to the cluster axis. The total moment of this
cluster is 2.04 µB, and its binding energy is Eb ) 2.17
eV/atom. However, this is not the ground state of Fe3.
The ground state is an equilateral triangle with
collinear arrangement. Its total moment is 8.00 µB

and its binding energy Eb ) 2.64 eV/atom. Linear
(D∞h) isomers were also found with collinear antifer-
romagnetic (AF) and ferromagnetic (AF) spin con-
figurations. The total moments of these two isomers
are 0.00 µB and 6.00 µB and their binding energies
2.15 eV/atom and 1.80 eV/atom, respectively. One can
notice that collinear states exist both in Fe3 and Fe5

with the same geometries of the noncollinear states,
although with slightly smaller binding energies.
Those collinear states also have lower magnetic
moments and, on average, slightly shortened bonds.
The magnetic energy associated with larger magnetic
moments appears to favor noncollinear spin configu-
rations. It should be stressed, nevertheless, that the
ground state of Fe3 is collinear. Calculations for Fe2

and Fe4 also gave collinear ground states. A com-
parison of the atomic and magnetic structures, bind-

ing energies, and magnetic moments is given in Table
4.

XIII. Summary
The recent literature investigating the relation

between electronic structure, atomic structure, and
magnetism of clusters of transition elements (with d
electrons) has been reviewed. Theoretical work is
mainly described as a tool to provide a microscopic
explanation of the results of experiments.

The most interesting characteristic of clusters is
that the values of their properties vary with the
cluster size N in an unsmooth way, sometimes having
oscillations whose amplitude decays for increasing N.
Those oscillations can have an electronic origin, as
is the case for the noble-metal elements Cu, Ag, and
Au, which have the d shells filled, and the oscillations
reveal the formation, by the outermost s electrons of
the atoms, of electronic orbitals extended over the
whole cluster volume. Abrupt jumps in the values of
many properties are associated to the filling of those
delocalized electronic shells. A second type of oscil-
lation is linked to purely geometrical effects. Experi-
ments measuring the adsorption of weakly reactive
molecules on the surface of the clusters, as well as
Stern-Gerlach-type measurements of the magnetic
moments, suggest a growth mode by the formation
of successive atomic layers. In one of the best studied
systems, NiN, the growth appears to occur by forming
layered icosahedral structures. Again, clusters form-
ing perfect icosahedra are special. The icosahedral
growth model is supported by theoretical calculations
for small clusters. However, only for small clusters
can one use the full power of ab initio methods,
especially DFT theory, to determine the geometrical
structure. For others, medium and large size clusters,
effective many-atom potentials are used instead. The
icosahedral growth can follow two different routes,
labeled as TIC and MIC routes (see section VII), that
correspond to two different ways of covering the
surface of a perfect icosahedron, and the theoretical
calculations employing a semiempirical many-atom
potential predict a TIC-MIC transition at Ni27-Ni28
(during the icosahedral growth from Ni13 to Ni55) and
at Ni74 (during the growth from Ni55 to Ni147). These
transitions explain a number of detailed observations
concerning the absorption of N2 molecules. Icosahe-
dral growth is consistent with the positions of the
minima of the average magnetic moment per atom
(as a function of N) measured in Stern-Gerlach

Γ(r) )
1

2
F(r)σ0 +

1

2
∑
k

mk(r)σk (59)

Table 4. Atomic and Magnetic Structure, Binding
Energy, and Total Magnetic Moment of Different
Isomers of Fe Clusters287

atomic
structure

magnetic
structure Eb (eV/at) µ (µB)

Fe2 D∞h collinear(F) 2.06 6.00
Fe3 D3v collinear(F) 2.64 8.00

D∞h noncollinear 2.17 2.04
D∞h collinear(AF) 2.15 0.00
D∞h collinear(F) 1.80 6.00

Fe4 D2d collinear(F) 3.13 12.00
Td collinear(F) 3.12 12.00

Fe5 D3h noncollinear 3.46 14.57
D3h collinear(F) 3.45 14.00
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experiments for NiN. However, the positions of the
maxima are difficult to explain and remain as an
open question.

The main trends in the behavior of the magnetic
moment of the transition-metal clusters can be
understood as a consequence of two main factors. The
first is the atomic coordination, which affects the local
moments and consequently the average cluster mo-
ment. A larger local atomic coordination widens the
local density of electronic states, decreasing the local
magnetic moments. The second factor is the nearest-
neighbor separation. Large nearest-neighbor dis-
tances decrease wave function overlap and maintain
the local magnetic moments closer to the values in
the free atoms. Due to the interplay of these two
factors, some clusters have been found (or predicted)
to be magnetic even if the same element is nonmag-
netic in the bulk metallic phase.
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M. P. Phys. Rev. B 1993, 48, 8253.
(167) Montejano-Carrizales, J. M.; Iñiguez, M. P.; Alonso, J. A. J.
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Lett. 1994, 73, 1432.

(262) Chen, B.; Castleman, A. W.; Khanna, S. N. Chem. Phys. Lett.
1999, 304, 423.

(263) Galicia, R. Rev. Mex. Fis. 1985, 32, 51.
(264) Reddy, B. V.; Khanna, S. N.; Dunlap, B. Phys. Rev. Lett. 1993,

70, 3323.
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Commun. 1994, 90, 31.
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